RESUMO
Autism spectrum disorder (ASD) is often grouped with other brain-related phenotypes into a broader category of neurodevelopmental disorders (NDDs). In clinical practice, providers need to decide which genes to test in individuals with ASD phenotypes, which requires an understanding of the level of evidence for individual NDD genes that supports an association with ASD. Consensus is currently lacking about which NDD genes have sufficient evidence to support a relationship to ASD. Estimates of the number of genes relevant to ASD differ greatly among research groups and clinical sequencing panels, varying from a few to several hundred. This Roadmap discusses important considerations necessary to provide an evidence-based framework for the curation of NDD genes based on the level of information supporting a clinically relevant relationship between a given gene and ASD.
Assuntos
Transtorno do Espectro Autista/genética , Medicina Baseada em Evidências/métodos , Estudos de Associação Genética/métodos , Encéfalo/crescimento & desenvolvimento , Cognição/fisiologia , Humanos , Deficiência Intelectual/genéticaRESUMO
We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Adolescente , Humanos , Criança , Saúde Mental , Variações do Número de Cópias de DNA/genética , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Dosagem de GenesRESUMO
The role of genetic testing in the domain of neurodevelopmental and psychiatric disorders (NPDs) is gradually changing from providing etiological explanation for the presence of NPD phenotypes to also identifying young individuals at high risk of developing NPDs before their clinical manifestation. In clinical practice, the latter implies a shift towards the availability of individual genetic information predicting a certain liability to develop an NPD (e.g., autism, intellectual disability, psychosis etc.). The shift from mostly a posteriori explanation to increasingly a priori risk prediction is the by-product of the systematic implementation of whole exome or genome sequencing as part of routine diagnostic work-ups during the neonatal and prenatal periods. This rapid uptake of genetic testing early in development has far-reaching consequences for psychiatry: Whereas until recently individuals would come to medical attention because of signs of abnormal developmental and/or behavioral symptoms, increasingly, individuals are presented based on genetic liability for NPD outcomes before NPD symptoms emerge. This novel clinical scenario, while challenging, also creates opportunities for research on prevention interventions and precision medicine approaches. Here, we review why optimization of individual risk prediction is a key prerequisite for precision medicine in the sphere of NPDs, as well as the technological and statistical methods required to achieve this ambition.
RESUMO
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are genetic disorders with lifespan risk for neuropsychiatric disorders. Microdeletions and duplications are associated with neurocognitive deficits, yet few studies compared these groups using the same measures to address confounding measurement differences. We report a prospective international collaboration applying the same computerized neurocognitive assessment, the Penn Computerized Neurocognitive Battery (CNB), administered in a multi-site study on rare genomic disorders: 22q11.2 deletions (n = 492); 22q11.2 duplications (n = 106); 16p11.2 deletion (n = 117); and 16p11.2 duplications (n = 46). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and psychomotor speed. Accuracy and speed for each domain were included as dependent measures in a mixed-model repeated measures analysis. Locus (22q11.2, 16p11.2) and Copy number (deletion/duplication) were grouping factors and Measure (accuracy, speed) and neurocognitive domain were repeated measures factors, with Sex and Site as covariates. We also examined correlation with IQ. We found a significant Locus × Copy number × Domain × Measure interaction (p = 0.0004). 22q11.2 deletions were associated with greater performance accuracy deficits than 22q11.2 duplications, while 16p11.2 duplications were associated with greater specific deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed compared to deletions. Performance profiles differed among the groups with particularly poor memory performance of the 22q11.2 deletion group while the 16p11.2 duplication group had greatest deficits in complex cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. Deletions and duplications of 22q11.2 and 16p11.2 have differential effects on accuracy and speed of neurocognition indicating locus specificity of performance profiles. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome, and can only be established in large-scale international consortia using the same neurocognitive assessment. Future studies could aim to link performance profiles to clinical features and brain function.
RESUMO
22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.
Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Feminino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/complicações , Substância Cinzenta/diagnóstico por imagemRESUMO
Recently, increasing numbers of rare pathogenic genetic variants have been identified that are associated with variably elevated risks of a range of neurodevelopmental outcomes, notably including Autism Spectrum Disorders (ASD), Schizophrenia Spectrum Disorders (SSD), and Intellectual Disability (ID). This review is organized along three main questions: First, how can we unify the exclusively descriptive basis of our current psychiatric diagnostic classification system with the recognition of an identifiable, highly penetrant genetic risk factor in an increasing proportion of patients with ASD or SSD? Second, what can be learned from studies of individuals with ASD or SSD who share a common genetic basis? And third, what accounts for the observed variable penetrance and pleiotropy of neuropsychiatric phenotypes in individuals with the same pathogenic variant? In this review, we focus on findings of clinical and preclinical studies of the 22q11.2 deletion syndrome (22q11DS). This particular variant is not only one of the most common among the increasing list of known rare pathogenic variants, but also one that benefits from a relatively long research history. Consequently, 22q11DS is an appealing model as it allows us to: (1) elucidate specific genotype-phenotype associations, (2) prospectively study behaviorally defined classifications, such as ASD or SSD, in the context of a known, well-characterized genetic basis, and (3) elucidate mechanisms underpinning variable penetrance and pleiotropy, phenomena with far-reaching ramifications for research and clinical practice. We discuss how findings from animal and in vitro studies relate to observations in human studies and can help elucidate factors, including genetic, environmental, and stochastic, that impact the expression of neuropsychiatric phenotypes in 22q11DS, and how this may inform mechanisms underlying neurodevelopmental expression in the general population. We conclude with research priorities for the field, which may pave the way for novel therapeutics.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Síndrome de DiGeorge , Esquizofrenia , Animais , Humanos , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Esquizofrenia/genética , Esquizofrenia/complicações , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/complicações , FenótipoRESUMO
22q11.2 deletion is one of the strongest known genetic risk factors for schizophrenia. Recent whole-genome sequencing of schizophrenia cases and controls with this deletion provided an unprecedented opportunity to identify risk modifying genetic variants and investigate their contribution to the pathogenesis of schizophrenia in 22q11.2 deletion syndrome. Here, we apply a novel analytic framework that integrates gene network and phenotype data to investigate the aggregate effects of rare coding variants and identified modifier genes in this etiologically homogenous cohort (223 schizophrenia cases and 233 controls of European descent). Our analyses revealed significant additive genetic components of rare nonsynonymous variants in 110 modifier genes (adjusted P = 9.4E-04) that overall accounted for 4.6% of the variance in schizophrenia status in this cohort, of which 4.0% was independent of the common polygenic risk for schizophrenia. The modifier genes affected by rare coding variants were enriched with genes involved in synaptic function and developmental disorders. Spatiotemporal transcriptomic analyses identified an enrichment of coexpression between modifier and 22q11.2 genes in cortical brain regions from late infancy to young adulthood. Corresponding gene coexpression modules are enriched with brain-specific protein-protein interactions of SLC25A1, COMT, and PI4KA in the 22q11.2 deletion region. Overall, our study highlights the contribution of rare coding variants to the SCZ risk. They not only complement common variants in disease genetics but also pinpoint brain regions and developmental stages critical to the etiology of syndromic schizophrenia.
Assuntos
Síndrome de DiGeorge , Esquizofrenia , Humanos , Adulto Jovem , Adulto , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Encéfalo , Perfilação da Expressão Gênica , Sequenciamento Completo do GenomaRESUMO
This study investigated the neurodevelopmental impact of pathogenic adenomatous polyposis coli (APC) gene variants in patients with familial adenomatous polyposis (FAP), a cancer predisposition syndrome. We hypothesized that certain pathogenic APC variants result in behavioral-cognitive challenges. We compared 66 FAP patients (cases) and 34 unaffected siblings (controls) to explore associations between APC variants and behavioral and cognitive challenges. Our findings indicate that FAP patients exhibited higher Social Responsiveness Scale (SRS) scores, suggesting a greater prevalence of autistic traits when compared to unaffected siblings (mean 53.8 vs. 47.4, Wilcoxon p = 0.018). The distribution of SRS scores in cases suggested a bimodal pattern, potentially linked to the location of the APC variant, with scores increasing from the 5' to 3' end of the gene (Pearson's r = 0.33, p = 0.022). While we observed a trend toward lower educational attainment in cases, this difference was not statistically significant. This study is the first to explore the connection between APC variant location and neurodevelopmental traits in FAP, expanding our understanding of the genotype-phenotype correlation. Our results emphasize the importance of clinical assessment for autistic traits in FAP patients, shedding light on the potential role of APC gene variants in these behavioral and cognitive challenges.
RESUMO
The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Cardiopatias Congênitas/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Cardiopatias Congênitas/patologia , Humanos , Desequilíbrio de Ligação , Masculino , Fenótipo , Proto-Oncogene Mas , Duplicações Segmentares GenômicasRESUMO
This review aimed to update the clinical practice guidelines for managing children and adolescents with 22q11.2 deletion syndrome (22q11.2DS). The 22q11.2 Society, the international scientific organization studying chromosome 22q11.2 differences and related conditions, recruited expert clinicians worldwide to revise the original 2011 pediatric clinical practice guidelines in a stepwise process: (1) a systematic literature search (1992-2021), (2) study selection and data extraction by clinical experts from 9 different countries, covering 24 subspecialties, and (3) creation of a draft consensus document based on the literature and expert opinion, which was further shaped by survey results from family support organizations regarding perceived needs. Of 2441 22q11.2DS-relevant publications initially identified, 2344 received full-text reviews, including 1545 meeting criteria for potential relevance to clinical care of children and adolescents. Informed by the available literature, recommendations were formulated. Given evidence base limitations, multidisciplinary recommendations represent consensus statements of good practice for this evolving field. These recommendations provide contemporary guidance for evaluation, surveillance, and management of the many 22q11.2DS-associated physical, cognitive, behavioral, and psychiatric morbidities while addressing important genetic counseling and psychosocial issues.
Assuntos
Síndrome de DiGeorge , Adolescente , Humanos , Criança , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/terapia , Aconselhamento Genético , Inquéritos e QuestionáriosRESUMO
Diagnosis of pathogenic genetic variants associated with neurodevelopmental and psychiatric disorders (NPDs) is increasingly made early in life. This narrative review focuses on the need for, and provision of, psychological supports following genetic diagnosis. We conducted a literature search of publications on how caregivers are informed about the NPD vulnerability associated with genetic variants, challenges and unmet needs when receiving this information, and whether psychological supports are provided. Given its early recognition, the 22q11.2 deletion has been studied thoroughly for two decades, providing generalizable insights. This literature indicates the complex caregivers' needs related to learning about potential NPD vulnerabilities associated with a genetic variant, include how to communicate the diagnosis, how to identify early signs of NPDs, how to deal with stigma and a lack of medical expertise outside of specialized genetics clinics. With one exception, no publications describe psychotherapeutic support provided to parents. In the absence of support, caregivers struggle with several unmet needs regarding potential longer-term NPD implications of a genetic diagnosis. The field needs to go beyond explaining genetic diagnoses and associated vulnerabilities, and develop approaches to support caregivers with communicating and managing NPD implications across the child's lifespan.
Assuntos
Cuidadores , Transtornos Mentais , Humanos , Criança , Pré-Escolar , Cuidadores/psicologia , Pais , Transtornos Mentais/diagnóstico , Transtornos Mentais/genéticaRESUMO
Genetic studies have revealed the involvement of hundreds of gene variants in autism. Their risk effects are highly variable, and they are frequently related to other conditions besides autism. However, many different variants converge on common biological pathways. These findings indicate that aetiological heterogeneity, variable penetrance and genetic pleiotropy are pervasive characteristics of autism genetics. Although this advancing insight should improve clinical care, at present there is a substantial discrepancy between research knowledge and its clinical application. In this Review, we discuss the current challenges and opportunities for the translation of autism genetics knowledge into clinical practice.
Assuntos
Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtorno Autístico/terapia , Predisposição Genética para Doença , Técnicas de Genotipagem , HumanosRESUMO
Bipolar disorder (BD) is a potentially chronic mental disorder marked by recurrent depressive and manic episodes, circadian rhythm disruption, and changes in energetic metabolism. "Metabolic jet lag" refers to a state of shift in circadian patterns of energy homeostasis, affecting neuroendocrine, immune, and adipose tissue function, expressed through behavioral changes such as irregularities in sleep and appetite. Risk factors include genetic variation, mitochondrial dysfunction, lifestyle factors, poor gut microbiome health and abnormalities in hunger, satiety, and hedonistic function. Evidence suggests metabolic jet lag is a core component of BD pathophysiology, as individuals with BD frequently exhibit irregular eating rhythms and circadian desynchronization of their energetic metabolism, which is associated with unfavorable clinical outcomes. Although current diagnostic criteria lack any assessment of eating rhythms, technological advancements including mobile phone applications and ecological momentary assessment allow for the reliable tracking of biological rhythms. Overall, methodological refinement of metabolic jet lag assessment will increase knowledge in this field and stimulate the development of interventions targeting metabolic rhythms, such as time-restricted eating.
RESUMO
PURPOSE: Neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not. METHODS: Using the Clinical Genome Resource gene-disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. RESULTS: As of September 2021, 156 gene-disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants. CONCLUSION: Our understanding of gene-disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene-disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genéticaRESUMO
Mood disorders, including depressive and bipolar disorders, represent a multidimensional and prevalent group of psychiatric illnesses characterized by disturbances in emotion, cognition and metabolism. Maladaptive eating behaviors in mood disorders are diverse and warrant characterization in order to increase the precision of diagnostic criteria, identify subtypes and improve treatment strategies. The current narrative review synthesizes evidence for Eating Behavioral Phenotypes (EBP) in mood disorders as well as advancements in pathophysiological conceptual frameworks relevant to each phenotype. Phenotypes include maladaptive eating behaviors related to appetite, emotion, reward, impulsivity, diet style and circadian rhythm disruption. Potential treatment strategies for each phenotype are also discussed, including psychotherapeutic, pharmacological and nutritional interventions. Maladaptive eating behaviors related to mood disorders are relevant from both clinical and research perspectives, yet have been somewhat overlooked thus far. A better understanding of this aspect of mood disorders holds promise to improve clinical care in this patient group and contribute to the subtyping of these currently subjectively diagnosed and treated disorders.
Assuntos
Transtorno Bipolar , Transtornos do Humor , Humanos , Transtornos do Humor/terapia , Transtornos do Humor/diagnóstico , Transtorno Bipolar/psicologia , Emoções , Comportamento Impulsivo , FenótipoRESUMO
BACKGROUND: Genotype-first and within-family studies can elucidate factors that contribute to psychiatric illness. Combining these approaches, we investigated the patterns of influence of parental scores, a high-impact variant, and schizophrenia on dimensional neurobehavioral phenotypes implicated in major psychiatric disorders. METHODS: We quantitatively assessed cognitive (FSIQ, VIQ, PIQ), social, and motor functioning in 82 adult individuals with a de novo 22q11.2 deletion (22 with schizophrenia), and 148 of their unaffected parents. We calculated within-family correlations and effect sizes of the 22q11.2 deletion and schizophrenia, and used linear regressions to assess contributions to neurobehavioral measures. RESULTS: Proband-parent intra-class correlations (ICC) were significant for cognitive measures (e.g. FSIQ ICC = 0.549, p < 0.0001), but not for social or motor measures. Compared to biparental scores, the 22q11.2 deletion conferred significant impairments for all phenotypes assessed (effect sizes -1.39 to -2.07 s.d.), strongest for PIQ. There were further decrements in those with schizophrenia. Regression models explained up to 37.7% of the variance in IQ and indicated that for proband IQ, parental IQ had larger effects than schizophrenia. CONCLUSIONS: This study, for the first time, disentangles the impact of a high-impact variant from the modifying effects of parental scores and schizophrenia on relevant neurobehavioral phenotypes. The robust proband-parent correlations for cognitive measures, independent of the impact of the 22q11.2 deletion and of schizophrenia, suggest that, for certain phenotypes, shared genetic variation plays a significant role in expression. Molecular genetic and predictor studies are needed to elucidate shared factors and their contribution to psychiatric illness in this and other high-risk groups.
Assuntos
Síndrome de DiGeorge , Esquizofrenia , Humanos , Modelos Genéticos , Esquizofrenia/genética , Fenótipo , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/psicologiaRESUMO
Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.
Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Esquizofrenia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genéticaRESUMO
BACKGROUND: Pediatric brain tumor survivors (PBTS) are at risk of experiencing social competence challenges, but only a limited number of studies have used a qualitative approach to understand their social relationships. We examined PBTS responses to social interview questions within the Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2), which includes questions related to their understanding of their own relationships, as well as the construct of friendship more generally. METHODS: Twenty-four PBTS (ages 9-17 years; M = 14.2 years from diagnosis; 50% male; 42% received radiation treatment) completed the ADOS-2. ADOS-2 social interview responses were recorded and transcribed verbatim. Themes were derived using an inductive thematic analysis approach. RESULTS: PBTS reported that they considered trust, acceptance, respect, emotional support, and spending time together to be important aspects of friendships in general. When describing their own social relationships, some PBTS noted a lack of intimacy or closeness, spending time with their friends almost exclusively at school, with structured activities outside of school being an additional basis for friendship. Challenges to their social relationships included loneliness and reliance on family for social support, experiences of teasing and bullying, social skills deficits, and lack of insight into social situations. CONCLUSION: Although PBTS were able to acknowledge many important qualities of friendships in general (e.g., trust, emotional support), these were not necessarily reported in their own friendships. PBTS also appeared to have difficulty identifying whether someone was their friend. These findings offer potential opportunities for supporting PBTS in achieving friendships consistent with their conception of this important relationship.
Assuntos
Transtorno Autístico , Neoplasias Encefálicas , Adolescente , Neoplasias Encefálicas/psicologia , Criança , Feminino , Amigos/psicologia , Humanos , Relações Interpessoais , Masculino , SobreviventesRESUMO
The majority (99%) of individuals with 22q11.2 deletion syndrome (22q11.2DS) have a deletion that is caused by non-allelic homologous recombination between two of four low copy repeat clusters on chromosome 22q11.2 (LCR22s). However, in a small subset of patients, atypical deletions are observed with at least one deletion breakpoint within unique sequence between the LCR22s. The position of the chromosome breakpoints and the mechanisms driving those atypical deletions remain poorly studied. Our large-scale, whole genome sequencing study of >1500 subjects with 22q11.2DS identified six unrelated individuals with atypical deletions of different types. Using a combination of whole genome sequencing data and fiber-fluorescence in situ hybridization, we mapped the rearranged alleles in these subjects. In four of them, the distal breakpoints mapped within one of the LCR22s and we found that the deletions likely occurred by replication-based mechanisms. Interestingly, in two of them, an inversion probably preceded inter-chromosomal 'allelic' homologous recombination between differently oriented LCR22-D alleles. Inversion associated allelic homologous recombination (AHR) may well be a common mechanism driving (atypical) deletions on 22q11.2.
Assuntos
Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Recombinação Homóloga/genética , Adulto , Alelos , Pontos de Quebra do Cromossomo , Deleção Cromossômica , Inversão Cromossômica/genética , Mapeamento Cromossômico/métodos , Cromossomos/genética , Cromossomos Humanos Par 22/genética , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Duplicações Segmentares Genômicas/genética , Sequenciamento Completo do Genoma/métodosRESUMO
22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.