Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(18): e18507, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39288445

RESUMO

The potential of extracellular vesicles (EVs) isolated from mesenchymal stromal cells in guiding macrophages toward anti-inflammatory immunophenotypes, has been reported in several studies. In our study, we provided experimental evidence of a distinctive effect played by Wharton Jelly mesenchymal stromal cell-derived EVs (WJ-EVs) on human macrophages. We particularly analyzed their anti-inflammatory effects on macrophages by evaluating their interactions with stellate cells, and their protective role in liver fibrosis. A three-step gradient method was used to isolate monocytes from umbilical cord blood (UCB). Two subpopulations of WJ-EVs were isolated by high-speed (20,000 g) and differential ultracentrifugation (110,000 g). Further to their characterization, they were designated as EV20K and EV110K and incubated at different concentrations with UCB-derived monocytes for 7 days. Their anti-fibrotic effect was assessed by studying the differentiation and functional levels of generated macrophages and their potential to modulate the survival and activity of LX2 stellate cells. The EV20K triggers the polarization of UCB-derived monocytes towards a peculiar M2-like functional phenotype more effectively than the M-CSF positive control. The EV20K treated macrophages were characterized by a higher expression of scavenger receptors, increased phagocytic capacity and production level of interleukin-10 and transforming growth factor-ß. Conditioned medium from those polarized macrophages attenuated the proliferation, contractility and activation of LX2 stellate cells. Our data show that EV20K derived from WJ-MSCs induces activated macrophages to suppress immune responses and potentially play a protective role in the pathogenesis of liver fibrosis by directly inhibiting HSC's activation.


Assuntos
Diferenciação Celular , Vesículas Extracelulares , Cirrose Hepática , Macrófagos , Células-Tronco Mesenquimais , Fenótipo , Geleia de Wharton , Células-Tronco Mesenquimais/metabolismo , Humanos , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Geleia de Wharton/citologia , Ativação de Macrófagos , Células Estreladas do Fígado/metabolismo , Monócitos/metabolismo , Fagocitose , Sangue Fetal/citologia , Sangue Fetal/metabolismo
2.
Diabetes Obes Metab ; 26(11): 5078-5086, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39161059

RESUMO

AIM: To assess the safety and efficacy of a local skin substitute product in the treatment of chronic diabetic foot ulcers (DFUs). MATERIALS AND METHODS: Five patients were evaluated over 6 months. Skin substitutes were applied twice at 2-week intervals. Patients were monitored for any possible adverse effects and wound improvement. RESULTS: The results indicated the overall safety of the skin substitute, with only few adverse effects unrelated to this product. Significant reduction in wound size was observed in four patients during the initial 12-week treatment phase, with complete closure in two patients at 24 weeks. CONCLUSIONS: The application of a bi-layered allogeneic keratinocyte and fibroblast skin substitute in patients with chronic DFU was safe and associated with favourable wound healing results. Adherence to standard treatment protocols, including optimal offloading, is essential to maximize the likelihood of successful wound healing.


Assuntos
Pé Diabético , Fibroblastos , Queratinócitos , Pele Artificial , Cicatrização , Humanos , Pé Diabético/terapia , Fibroblastos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Resultado do Tratamento , Diabetes Mellitus Tipo 2/complicações , Transplante de Pele/métodos
3.
Cell Biol Int ; 48(5): 556-576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411312

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high death rate in the world. The molecular mechanisms related to the pathogenesis of HCC have not been precisely defined so far. Hence, this review aimed to address the potential cross-talk between noncoding RNAs (ncRNAs) and programmed cell death in HCC. All related papers in the English language up to June 2023 were collected and screened. The searched keywords in scientific databases, including Scopus, PubMed, and Google Scholar, were HCC, ncRNAs, Epigenetic, Programmed cell death, Autophagy, Apoptosis, Ferroptosis, Chemoresistance, Tumor recurrence, Prognosis, and Prediction. According to the reports, ncRNAs, comprising long ncRNAs, microRNAs, circular RNAs, and small nucleolar RNAs can affect cell proliferation, migration, invasion, and metastasis, as well as cell death-related processes, such as autophagy, ferroptosis, necroptosis, and apoptosis in HCC by regulating cancer-associated genes and signaling pathways, for example, phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase/MAPK, and Wnt/ß-catenin signaling pathways. It seems that ncRNAs, as epigenetic regulators, can be utilized as biomarkers in diagnosis, prognosis, survival and recurrence rates prediction, chemoresistance, and evaluation of therapeutic response in HCC patients. However, more scientific evidence is suggested to be accomplished to confirm these results.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/genética , Fosfatidilinositol 3-Quinases/metabolismo , Epigênese Genética , Via de Sinalização Wnt , Apoptose/genética
4.
Scand J Gastroenterol ; 59(5): 623-629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319110

RESUMO

The liver performs a wide range of biological functions that are essential to body homeostasis. Damage to liver tissue can result in reduced organ function, and if chronic in nature can lead to organ scarring and progressive disease. Currently, donor liver transplantation is the only longterm treatment for end-stage liver disease. However, orthotopic organ transplantation suffers from several drawbacks that include organ scarcity and lifelong immunosuppression. Therefore, new therapeutic strategies are required. One promising strategy is the engineering of implantable and vascularized liver tissue. This resource could also be used to build the next generation of liver tissue models to better understand human health, disease and aging in vitro. This article reviews recent progress in the field of liver tissue bioengineering, including microfluidic-based systems, bio-printed vascularized tissue, liver spheroids and organoid models, and the induction of angiogenesis in vivo.


Assuntos
Fígado , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Fígado/irrigação sanguínea , Organoides , Transplante de Fígado , Bioimpressão/métodos , Pesquisa Biomédica , Neovascularização Fisiológica , Bioengenharia , Animais
5.
Arch Toxicol ; 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39503877

RESUMO

Drug toxicity is an important cause of chronic liver damage, which in the long term can lead to impaired bone homeostasis through an imbalance in the liver-bone axis. For instance, non-steroidal anti-inflammatory drugs (e.g., diclofenac), which are commonly used to control pain during orthopaedic interventions, are known to reduce bone quality and are the most prevalent causes of drug-induced liver damage. Therefore, we used human cell lines to produce a stable, reproducible, and reliable in vitro liver-bone co-culture model, which mimics the impaired bone homeostasis seen after diclofenac intake in vivo. To provide the best cell culture conditions for the two systems, we tested the effects of supplements contained in liver and bone cell culture medium on liver and bone cell lines, respectively. Additionally, different ratios of culture medium combinations on bone cell scaffolds and liver spheroids' viability and function were also analysed. Then, liver spheroids and bone scaffolds were daily exposed to 3-6 µM diclofenac alone or in co-culture to compare and evaluate its effect on the liver and bone system. Our results demonstrated that a 50:50 liver:bone medium combination maintains the function of liver spheroids and bone scaffolds for up to 21 days. Osteoclast-like cell activity was significantly upregulated after chronic exposure to diclofenac only in bone scaffolds co-cultured with liver spheroids. Consequently, the mineral content and stiffness of bone scaffolds treated with diclofenac in co-culture with liver spheroids were significantly reduced. Interestingly, our results show that the increase in osteoclastic activity in the system is not related to the main product of diclofenac metabolism. However, osteoclast activation correlated with the increase in oxidative stress and inflammation associated with chronic diclofenac exposure. In summary, we established a long-term stable liver-bone system that represents the interaction between the two organs, meanwhile, it is also an outstanding model for studying the toxicity of drugs on bone homeostasis.

6.
Endocr Res ; 49(4): 223-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38982737

RESUMO

OBJECTIVE: Type 1 diabetes mellitus (T1DM) is an autoimmune disease where immune cells attack insulin-producing beta cells. Islet transplantation is a promising treatment for T1DM. This study aims to evaluate the effects of adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with pancreatic islet transplantation using hydrogel. METHODS: T1DM mouse model was established using streptozotocin (STZ). Islets and AT-MSCs were co-embedded in a hydrogel and transplanted into diabetic mice. Five groups with six animals in each (control, hydrogel alone, AT-MSCs embedded hydrogel, islet embedded in hydrogel, and islet + AT-MSCs co-imbedded into a hydrogel) were evaluated in terms of blood glucose, insulin levels and serum and lavage cytokine production. RESULTS: During 32 days, blood glucose levels decreased from over 400 mg/dl to less than 150 mg/dl in the transplanted mice. Analysis showed increased transformation growth factor beta (TGF-ß1) and IL-4 levels, while IL-17 and IFN-γ levels significantly decreased in the MSC-treated groups. CONCLUSION: These findings suggest that using AT-MSCs with hydrogel could be a beneficial alternative for enhancing pancreatic islet engraftment and function.


Assuntos
Tecido Adiposo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/sangue , Camundongos , Transplante de Células-Tronco Mesenquimais/métodos , Diabetes Mellitus Experimental/terapia , Masculino , Glicemia/metabolismo , Camundongos Endogâmicos C57BL , Aloenxertos , Inflamação
7.
Artigo em Inglês | MEDLINE | ID: mdl-39289044

RESUMO

BACKGROUND: Despite considerable advancements in identifying factors contributing to the development of hepatocellular carcinoma (HCC), the pathogenesis of HCC remains unclear. In many cases, HCC is a consequence of prolonged liver fibrosis, resulting in the formation of an intricate premalignant microenvironment. The accumulation of extracellular matrix (ECM) is a hallmark of premalignant microenvironment. Given the critical role of different matrix components in regulating cell phenotype and function, this study aimed to elucidate the interplay between the fibrotic matrix and malignant features in HCC. METHODS: Liver tissues from both control (normal) and carbon tetrachloride (CCl4)-induced fibrotic rats were decellularized using sodium dodecyl sulfate (SDS) and Triton X-100. The resulting hydrogel from decellularized ECM was processed into micro-particles via the water-in-oil emulsion method. Micro-particles were subsequently incorporated into three-dimensional liver biomimetic micro-tissues (MTs) comprising Huh-7 cells, human umbilical vein endothelial cells (HUVECs), and LX-2 cells. The MTs were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay at day 11, immunofluorescence staining, immunoblotting, and spheroid migration assay at day 14 after co-culture. RESULTS: Fibrotic matrix from CCl4-treated rat livers significantly enhanced the growth rate of the MTs and their expression of CCND1 as compared to the normal one. Fibrotic matrix, also induced the expression of epithelial-to-mesenchymal transition (EMT)-associated genes such as TWIST1, ACTA2, MMP9, CDH2, and VIMENTIN in the MTs as compared to the normal matrix. Conversely, the expression of CDH1 and hepatic maturation genes HNF4A, ALB, CYP3A4 was decreased in the MTs when the fibrotic matrix was used. Furthermore, the fibrotic matrix increased the migration of the MTs and their secretion of alpha-fetoprotein. CONCLUSIONS: Our findings suggest a regulatory role for the fibrotic matrix in promoting cancerous phenotype, which could potentially accelerate the progression of malignancy in the liver.

8.
Drug Dev Res ; 85(3): e22189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678548

RESUMO

In the recent decade, nanoparticles (NPs) have had enormous implications in cancer biomedicine, including research, diagnosis, and therapy. However, their broad application still faces obstacles due to some practical limitations and requires further development. Recently, there has been more interest in the coated class of nanoparticles to address those challenges. Chitosan-coated NPs are simple to produce, biodegradable, biocompatible, exhibit antibacterial activity, and have less cytotoxicity. This study provides an updated and comprehensive overview of the application of chitosan-coated NPs as a promising class of NPs in cancer biomedicine. Additionally, we discussed chitosan-coated lipid, metal, and polymer-based nanoparticles in biomedical applications. Furthermore, different coating methods and production/characterization procedures were reviewed. Moreover, the biological and physicochemical advantages of chitosan-coated NPs, including facilitated controlled release, greater physicochemical stability, improved cell/tissue interaction, and enhanced bioavailability of medications, were highlighted. Finally, the prospects of chitosan-coated NPs in cancer biomedicine were discussed.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Quitosana/química , Humanos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia
9.
J Cell Mol Med ; 27(17): 2572-2582, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537749

RESUMO

Anti-cancer properties of (-)-epigallocatechin-3-gallate (EGCG) are mediated via apoptosis induction, as well as inhibition of cell proliferation and histone deacetylase. Accumulation of stabilized cellular FLICE-inhibitory protein (c-FLIP)/Ku70 complex in the cytoplasm inhibits apoptosis through interruption of extrinsic apoptosis pathway. In this study, we evaluated the anti-cancer role of EGCG in gastric cancer (GC) cells through dissociation of c-FLIP/Ku70 complex. MKN-45 cells were treated with EGCG or its antagonist MG149 for 24 h. Apoptosis was evaluated by flow cytometry and quantitative RT-PCR. Protein expression of c-FLIP and Ku70 was analysed using western blot and immunofluorescence. Dissociation of c-FLIP/Ku70 complex as well as Ku70 translocation were studied by sub-cellular fractionation and co-immunoprecipitation. EGCG induced apoptosis in MKN-45 cells with substantial up-regulation of P53 and P21, down-regulation of c-Myc and Cyclin D1 as well as cell cycle arrest in S and G2/M check points. Moreover, EGCG treatment suppressed the expression of c-FLIP and Ku70, decreased their interaction while increasing the Ku70 nuclear content. By dissociating the c-FLIP/Ku70 complex, EGCG could be an alternative component to the conventional HDAC inhibitors in order to induce apoptosis in GC cells. Thus, its combination with other cancer therapy protocols could result in a better therapeutic outcome.


Assuntos
Catequina , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Apoptose , Catequina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
10.
J Cell Mol Med ; 27(6): 763-787, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786037

RESUMO

Ischaemic disorders are leading causes of morbidity and mortality worldwide. While the current therapeutic approaches have improved life expectancy and quality of life, they are unable to "cure" ischemic diseases and instate regeneration of damaged tissues. Exosomes are a class of extracellular vesicles with an average size of 100-150 nm, secreted by many cell types and considered a potent factor of cells for paracrine effects. Since exosomes contain multiple bioactive components such as growth factors, molecular intermediates of different intracellular pathways, microRNAs and nucleic acids, they are considered as cell-free therapeutics. Besides, exosomes do not rise cell therapy concerns such as teratoma formation, alloreactivity and thrombotic events. In addition, exosomes are stored and utilized more convenient. Interestingly, exosomes could be an ideal complementary therapeutic tool for ischemic disorders. In this review, we discussed therapeutic functions of exosomes in ischemic disorders including angiogenesis induction through various mechanisms with specific attention to vascular endothelial growth factor pathway. Furthermore, different delivery routes of exosomes and different modification strategies including cell preconditioning, gene modification and bioconjugation, were highlighted. Finally, pre-clinical and clinical investigations in which exosomes were used were discussed.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Exossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Qualidade de Vida , MicroRNAs/genética , Vesículas Extracelulares/metabolismo
11.
Cancer Sci ; 114(4): 1337-1352, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36479791

RESUMO

Hepatocellular carcinoma (HCC) is a heterogeneous, late-diagnosed, and highly recurrent malignancy that often affects the whole body's metabolism. Finding certain theranostic molecules that can address current concerns simultaneously is one of the priorities in HCC management. In this study, performing protein-protein interaction network analysis proposed hepatocyte nuclear factor 4 alpha (HNF4α) as a hub protein, associating epithelial-mesenchymal transition (EMT) to reprogrammed cancer metabolism, formerly known as the Warburg effect. Both phenomena improved the compensation of cancerous cells in competitive conditions. Mounting evidence has demonstrated that HNF4α is commonly downregulated and serves as a tumor suppressor in the HCC. Enhancing the HNF4α mRNA translation through a specific synthetic antisense long non-coding RNA, profoundly affects both EMT and onco-metabolic modules in HCC cells. HNF4α overexpression decreased featured mesenchymal transcription factors and improved hepatocytic function, decelerated glycolysis, accelerated gluconeogenesis, and improved dysregulated cholesterol metabolism. Moreover, HNF4α overexpression inhibited the migration, invasion, and proliferation of HCC cells and decreased metastasis rate and tumor growth in xenografted nude mice. Our findings suggest a central regulatory role for HNF4α through its broad access to a wide variety of gene promoters involved in EMT and the Warburg effect in human hepatocytes. This essential impact indicates that HNF4α may be a potential target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/genética , Fator 4 Nuclear de Hepatócito/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
12.
Mol Cell Biochem ; 478(1): 23-37, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35708866

RESUMO

Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1/metabolismo , Receptor Celular 2 do Vírus da Hepatite A , Radioimunoterapia , Proteínas do Tecido Nervoso , Receptores Imunológicos , Imunoterapia/métodos , Microambiente Tumoral
13.
Soft Matter ; 19(13): 2430-2437, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36930054

RESUMO

Fibrin and its modifications, particularly those with functionalized polyethylene glycol (PEG), remain highly attractive as a biomaterial in drug delivery and regenerative medicine. Despite the extensive knowledge of fibrinogenesis, there is little information on the processes occurring after its modification. Previously, we found structural differences between native fibrin and its conjugates with PEG that allows us to hypothesize that a combination of methods such as terahertz (THz) pulsed spectroscopy and rheology may contribute to the characterization of gelation and reveal the effect of PEG on the polymerization dynamics. Compared to native fibrin, PEGylated fibrins had a homogenously soft surface; PEGylation also led to a significant decrease in the gelation time: from 42.75 min for native fibrin to 31.26 min and 35.09 min for 5 : 1 and 10 : 1 PEGylated fibrin, respectively. It is worth noting that THz pulsed spectroscopy makes it possible to reliably investigate only the polymerization process itself, while it does not allow us to observe statistically significant differences between the distinct PEGylated fibrin gels. The polymerization time constant of native fibrin measured by THz pulsed spectroscopy was 14.4 ± 2.8 min. However, it could not be calculated for PEGylated fibrin because the structural changes were too rapid. These results, together with those previously reported, led us to speculate that PEG-fibrin conjugates formed homogenously distributed highly water-shelled aggregates without bundling compared to native fibrin, ensuring rapid gelation and stabilization of the system without increasing its complexity.


Assuntos
Fibrina , Polietilenoglicóis , Polietilenoglicóis/química , Fibrina/química , Polimerização , Materiais Biocompatíveis/química , Medicina Regenerativa
14.
Dev Biol ; 475: 37-53, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33684433

RESUMO

In recent years, the development of 3D organoids has opened new avenues of investigation into development, physiology, and regenerative medicine. Organoid formation and the process of organogenesis share common developmental pathways; thus, our knowledge of developmental biology can help model the complexity of different organs to refine organoids into a more sophisticated platform. The developmental process is strongly dependent on complex networks and communication of cell-cell and cell-matrix interactions among different cell populations and their microenvironment, during embryogenesis. These interactions affect cell behaviors such as proliferation, survival, migration, and differentiation. Co-culture systems within the organoid technology were recently developed and provided the highly physiologically relevant systems. Supportive cells including various types of endothelial and stromal cells provide the proper microenvironment, facilitate organoid assembly, and improve vascularization and maturation of organoids. This review discusses the role of the co-culture systems in organoid generation, with a focus on how knowledge of developmental biology has directed and continues to shape the development of more evolved 3D co-culture system-derived organoids.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Cocultura/métodos , Organoides/crescimento & desenvolvimento , Animais , Técnicas de Cultura de Células/tendências , Diferenciação Celular , Técnicas de Cocultura/tendências , Biologia do Desenvolvimento/tendências , Humanos , Organogênese , Organoides/citologia , Organoides/metabolismo
15.
J Cell Physiol ; 237(11): 3984-4000, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36037302

RESUMO

Development is a symphony of cells differentiation in which different signaling pathways are orchestrated at specific times and periods to form mature and functional cells from undifferentiated cells. The similarity of the gene expression profile in malignant and undifferentiated cells is an interesting topic that has been proposed for many years and gave rise to the differentiation-therapy concept, which appears a rational insight and should be reconsidered. Hepatocellular carcinoma (HCC), as the sixth common cancer and the third leading cause of cancer death worldwide, is one of the health-threatening complications in communities where hepatotropic viruses are endemic. Sedentary lifestyle and high intake of calories are other risk factors. HCC is a complex condition in which various dimensions must be addressed, including heterogeneity of cells in the tumor mass, high invasiveness, and underlying diseases that limit the treatment options. Under these restrictions, recognizing, and targeting common signaling pathways during liver development and HCC could expedite to a rational therapeutic approach, reprograming malignant cells to well-differentiated ones in a functional state. Accordingly, in this review, we highlighted the commonalities of signaling pathways in hepatogenesis and hepatocarcinogenesis, and comprised an update on the current status of targeting these pathways in laboratory studies and clinical trials.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Transdução de Sinais
16.
Connect Tissue Res ; 63(6): 663-674, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35856397

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) injection has been proposed as an innovative treatment for knee osteoarthritis (KOA). Since, allogeneic MSCs can be available as off-the-shelf products, they are preferable in regenerative medicine. Among different sources for MSCs, adipose-derived MSCs (AD-MSCs) appear to be more available. METHODS: Three patients with KOA were enrolled in this study. A total number of 100 × 106 AD-MSCs was injected intra-articularly, per affected knee. They were followed up for 6 months by the assessment of clinical outcomes, magnetic resonance imaging (MRI), and serum inflammatory biomarkers. RESULTS: The primary outcome of this study was safety and feasibility of allogeneic AD-MSCs injection during the 6 months follow-up. Fortunately, no serious adverse events (SAEs) were reported. Assessment of secondary outcomes of visual analogue scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and knee osteoarthritis outcome score (KOOS) indicated improvement in all patients. Comparison between baseline and endpoint findings of MRI demonstrated a slight improvement in two patients. In addition, decrease in serum cartilage oligomeric matrix protein (COMP) and hyaluronic acid (HA) indicated the possibility of reduced cartilage degeneration. Moreover, quantification of serum interleukin-10 (IL-10) and interleukin-6 (IL-6) levels indicated that the host immune system immunomodulated after infusion of AD-MSCs. CONCLUSION: Intra-articular injection of AD-MSCs is safe and could be effective in cartilage regeneration in KOA. Preliminary assessment after six-month follow-up suggests the potential efficacy of this intervention which would need to be confirmed in randomized controlled trials on a larger population. TRIAL REGISTRATION: This study was registered in the Iranian registry of clinical trials (https://en.irct.ir/trial/46) in 24 April 2018 with identifier IRCT20080728001031N23.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite do Joelho , Proteína de Matriz Oligomérica de Cartilagem , Humanos , Ácido Hialurônico , Injeções Intra-Articulares , Interleucina-10 , Interleucina-6 , Irã (Geográfico) , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/terapia , Resultado do Tratamento
17.
Soft Matter ; 18(11): 2222-2233, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35229856

RESUMO

Cell viability is the primary integrative parameter used for various purposes, particularly when fabricating tissue equivalents (e.g., using bioprinting or scaffolding techniques), optimizing conditions to cultivate cells, testing chemicals, drugs, and biomaterials, etc. Most of the conventional methods were originally designed for a monolayer (2D) culture; however, 2D approaches fail to adequately assess a tissue-engineered construct's viability and drug effects and recapitulate the host-pathogen interactions and infectivity. This study aims at revealing the influence of particular 3D cell systems' parameters such as the components' concentration, gel thickness, cell density, etc. on the cell viability and applicability of standard assays. Here, we present an approach to achieving adequate and reproducible results on the cell viability in 3D collagen- and fibrin-based systems using the Live/Dead, AlamarBlue, and PicoGreen assays. Our results have demonstrated that a routine precise analysis of 3D systems should be performed using a combination of at least three methods based on different cell properties, e.g. the metabolic activity, proliferative capacity, morphology, etc.


Assuntos
Bioimpressão , Materiais Biocompatíveis/farmacologia , Bioimpressão/métodos , Sobrevivência Celular , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
18.
BMC Neurol ; 22(1): 123, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351020

RESUMO

INTRODUCTION: The current multi-center, randomized, double-blind study was conducted among children with cerebral palsy (CP) to assess the safety and efficacy of umbilical cord blood mononuclear cell (UCB-MNC). We performed the diffusion tensor imaging to assess the changes in the white matter structure. METHODS: Males and females aged 4 to 14 years old with spastic CP were included. Eligible participants were allocated in 4:1 ratio to be in the experimental or control groups; respectively. Individuals who were assigned in UCB-MNC group were tested for human leukocyte antigen (HLA) and fully-matched individuals were treated with UCB-MNCs. A single dose (5 × 106 /kg) UCB-MNCs were administered via intrathecal route in experimental group. The changes in gross motor function measure (GMFM)-66 from baseline to one year after treatment were the primary endpoints. The mean changes in modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also evaluated and compared between groups. The mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR) were the secondary endpoints. Adverse events were safety endpoint. RESULTS: There were 72 included individuals (36 cases in each group). The mean GMFM-66 scores increased in experimental group; compared to baseline (+ 9.62; 95%CI: 6.75, 12.49) and control arm (ß: 7.10; 95%CI: 2.08, 12.76; Cohen's d: 0.62) and mean MAS reduced in individuals treated with UCB-MNCs compared to the baseline (-0.87; 95%CI: -1.2, -0.54) and control group (ß: -0.58; 95%CI: -1.18, -0.11; Cohen's d: 0.36). The mean PEDI scores and mean CP-QoL scores in two domains were higher in the experimental group compared to the control. The imaging data indicated that mean FA increased and MD decreased in participants of UCB-MNC group indicating improvements in white matter structure. Lower back pain, headaches, and irritability were the most common adverse events within 24 h of treatment that were related to lumbar puncture. No side effects were observed during follow-up. CONCLUSIONS: This trial showed that intrathecal injection of UCB-MNCs were safe and effective in children with CP. TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov ( NCT03795974 ).


Assuntos
Paralisia Cerebral , Adolescente , Criança , Pré-Escolar , Imagem de Tensor de Difusão/métodos , Método Duplo-Cego , Feminino , Sangue Fetal , Humanos , Masculino , Qualidade de Vida
19.
Mol Biol Rep ; 49(2): 1545-1549, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028855

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in more than 4.4 million deaths worldwide as of August 24, 2021. Viral infections such as SARS-CoV2 are associated with endoplasmic reticulum (ER) stress and also increased the level of reactive oxygen species. Activating transcription factor 4 (ATF4) is preferentially translated under integrated stress conditions and controls the genes involved in protein homeostasis, amino acid transport and metabolism, and also protection from oxidative stress. The GRP78, regulated either directly or indirectly by ATF4, is an essential chaperone in the ER and overexpressed and appears on the surface of almost all cells during stress and function as a SARS-CoV2 receptor. In this mini-review article, we briefly discuss the effects of SARS-CoV2 infection on the ER stress, and then the stress modulator functions of ATF4 and GRP78 as novel therapeutic targets were highlighted. Finally, the effects of GRP78 inhibitory components as potential factors for targeted therapies for COVID-19 critical cases were discussed.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , COVID-19/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Humanos , SARS-CoV-2/patogenicidade
20.
Arch Toxicol ; 96(6): 1799-1813, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366062

RESUMO

Liver fibrosis is the late consequence of chronic liver inflammation which could eventually lead to cirrhosis, and liver failure. Among various etiological factors, activated hepatic stellate cells (aHSCs) are the major players in liver fibrosis. To date, various in vitro liver fibrosis models have been introduced to address biological and medical questions. Availability of traditional in vitro models could not fully recapitulate complicated pathology of liver fibrosis. The purpose of this study was to develop a simple and robust model to investigate the role of aHSCs on the progression of epithelial to mesenchymal transition (EMT) in hepatocytes during liver fibrogenesis. Therefore, we applied a micropatterning approach to generate 3D co-culture microtissues consisted of HepaRG and human umbilical cord endothelial cells (HUVEC) which co-cultured with inactivated LX-2 cells or activated LX-2 cells, respectively, as normal or fibrotic liver models in vitro. The result indicated that the activated LX-2 cells could induce EMT in HepaRG cells through activation of TGF-ß/SMAD signaling pathway. Besides, in the fibrotic microtissue, physiologic function of HepaRG cells attenuated compared to the control group, e.g., metabolic activity and albumin secretion. Moreover, our results showed that after treatment with Galunisertib, the fibrogenic properties decreased, in the term of gene and protein expression. In conclusion, it is proposed that aHSCs could lead to EMT in hepatocytes during liver fibrogenesis. Furthermore, the scalable micropatterning approach could provide enough required liver microtissues to prosper our understanding of the mechanisms involved in the progression of liver fibrosis as well as high throughput (HT) drug screening.


Assuntos
Células Endoteliais , Transição Epitelial-Mesenquimal , Células Endoteliais/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA