Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(12): 3939-3954, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37160606

RESUMO

The aim of the present study was the characterisation of three true subtilisins and one phylogenetically intermediate subtilisin from halotolerant and halophilic microorganisms. Considering the currently growing enzyme market for efficient and novel biocatalysts, data mining is a promising source for novel, as yet uncharacterised enzymes, especially from halophilic or halotolerant Bacillaceae, which offer great potential to meet industrial needs. Both halophilic bacteria Pontibacillus marinus DSM 16465T and Alkalibacillus haloalkaliphilus DSM 5271T and both halotolerant bacteria Metabacillus indicus DSM 16189 and Litchfieldia alkalitelluris DSM 16976T served as a source for the four new subtilisins SPPM, SPAH, SPMI and SPLA. The protease genes were cloned and expressed in Bacillus subtilis DB104. Purification to apparent homogeneity was achieved by ethanol precipitation, desalting and ion-exchange chromatography. Enzyme activity could be observed between pH 5.0-12.0 with an optimum for SPPM, SPMI and SPLA around pH 9.0 and for SPAH at pH 10.0. The optimal temperature for SPMI and SPLA was 70 °C and for SPPM and SPAH 55 °C and 50 °C, respectively. All proteases showed high stability towards 5% (w/v) SDS and were active even at NaCl concentrations of 5 M. The four proteases demonstrate potential for future biotechnological applications. KEY POINTS: • Halophilic and halotolerant Bacillaceae are a valuable source of new subtilisins. • Four new subtilisins were biochemically characterised in detail. • The four proteases show potential for future biotechnological applications.


Assuntos
Bacillaceae , Bacillaceae/genética , Bactérias , Subtilisina , Peptídeo Hidrolases , Temperatura
2.
Methods Mol Biol ; 2713: 117-128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639118

RESUMO

Human immune system mice, also referred to as humanized mice, are a major research tool for the in vivo study of human immune system function. Upon reconstitution with human hematopoietic stem cells, all major human leukocyte populations develop in immunodeficient mice and can be detected in peripheral blood as well as in lymphatic and nonlymphatic tissue. This includes human macrophages that are intrinsically difficult to study from humans due to their organ-resident nature. In the following chapter, we provide a detailed protocol for generation of human immune system mice. We suggest that these mice are a suitable model to study human macrophage function in vivo.


Assuntos
Vasos Linfáticos , Macrófagos , Humanos , Animais , Camundongos , Leucócitos , Células-Tronco Hematopoéticas , Projetos de Pesquisa
3.
Pain ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888745

RESUMO

ABSTRACT: The co-occurrence of bruxism, temporomandibular disorders (TMDs), and headache is common in patients. However, there is conflicting evidence regarding whether this association is simply a result of their high prevalence or whether there are indeed causal relationships. This review provides an overview of the current state of research while taking into account the controversies surrounding research methods, particularly in definitions and diagnostic standards. Bruxism-defined as repetitive jaw muscle activity during sleep or wakefulness-is not a painful disorder but may-particularly in co-occurrence with TMD-worsen pre-existing headache. It seems important to differentiate between sleep and awake bruxism because of different impact on pathophysiological processes in different primary headache disorders such as migraine and tension-type headache. Temporomandibular disorder is a heterogenous entity with both myofascial and arthrogenous types of pain in addition to nonpainful disorders. Research suggests a correlation between TMD pain and migraine, as well as between awake bruxism and tension-type headache. However, psychosocial factors may act as confounders in these relationships. Determining causality is challenging because of the limited number of experimental and clinical studies conducted on this topic. The main finding is an apparent lack of consensus on the definition and assessment criteria for bruxism. Treatment wise, it is important to differentiate all 3 conditions because treatment of one condition may have an effect on the other 2 without proving causality. For future research, it is crucial to establish greater consistency and applicability in diagnostic procedures and definitions. In addition, more experimental and clinical studies investigating the question of causality are needed.

4.
Front Immunol ; 14: 1182502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469513

RESUMO

The transcription factor Interferon Regulatory Factor 4 (IRF4) is central in control of T cell activation and differentiation. Deficiency of IRF4 results in severe immune deficiency and affects maturation and function of most if not all T cell subsets. Here we use mouse infection models for Citrobacter rodentium and Strongyloides ratti to analyze the function of IRF4 in T helper (Th) 17 and Th2 cell responses, respectively. IRF4 deficient mice were impaired in the control of both pathogens, failed to mount Th17 and Th2 cell responses and showed impaired recruitment of T helper cells to the intestine, the infection site of both pathogens. Compromised intestinal migration was associated with reduced expression of the intestinal homing receptors α4ß7 integrin, CCR9 and GPR15. Identification of IRF4 binding sites in the gene loci of these receptors suggests a direct control of their expression by IRF4. Competitive T cell transfer assays further demonstrated that loss of one functional Irf4 allele already affected intestinal accumulation and Th2 and Th17 cell generation, indicating that lower IRF4 levels are of disadvantage for Th2 and Th17 cell differentiation as well as their migration to the intestine. Conversion of peripheral CD4+ T cells from an Irf4 wildtype to an Irf4 heterozygous or from an Irf4 heterozygous to a homozygous mutant genotype after C. rodentium or S. ratti infection did not reduce their capacity to produce Th17 or Th2 cytokines and only partially affected their persistence in the intestine, revealing that IRF4 is not essential for maintenance of the Th2 and Th17 phenotype and for survival of these T helper cells in the intestine. In conclusion, we demonstrate that the expression levels of IRF4 determine Th2 and Th17 cell differentiation and their intestinal accumulation but that IRF4 expression is not crucial for Th2 and Th17 cell survival.


Assuntos
Linfócitos T CD4-Positivos , Movimento Celular , Fatores Reguladores de Interferon , Intestinos , Animais , Camundongos , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Células Th17 , Células Th2 , Linfócitos T CD4-Positivos/citologia
5.
Front Microbiol ; 12: 643275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025604

RESUMO

A novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in China in December 2019, causing an ongoing, rapidly spreading global pandemic. Worldwide, vaccination is now expected to provide containment of the novel virus, resulting in an antibody-mediated immunity. To verify this, serological antibody assays qualitatively as well as quantitatively depicting the amount of generated antibodies are of great importance. Currently available test methods are either laboratory based or do not have the ability to indicate an estimation about the immune response. To overcome this, a novel and rapid serological magnetic immunodetection (MID) point-of-care (PoC) assay was developed, with sensitivity and specificity comparable to laboratory-based DiaSorin Liaison SARS-CoV-2 S1/S2 IgG assay. To specifically enrich human antibodies against SARS-CoV-2 in immunofiltration columns (IFCs) from patient sera, a SARS-CoV-2 S1 antigen was transiently produced in plants, purified and immobilized on the IFC. Then, an IgG-specific secondary antibody could bind to the retained antibodies, which was finally labeled using superparamagnetic nanoparticles. Based on frequency magnetic mixing technology (FMMD), the magnetic particles enriched in IFC were detected using a portable FMMD device. The obtained measurement signal correlates with the amount of SARS-CoV-2-specific antibodies in the sera, which could be demonstrated by titer determination. In this study, a MID-based assay could be developed, giving qualitative as well as semiquantitative results of SARS-CoV-2-specific antibody levels in patient's sera within 21 min of assay time with a sensitivity of 97% and a specificity of 92%, based on the analysis of 170 sera from hospitalized patients that were tested using an Food and Drug Administration (FDA)-certified chemiluminescence assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA