Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 26(15): 155301, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25800030

RESUMO

Laser nanostructuring of pure ultrathin metal layers or ceramic/metal composite thin films has emerged as a promising route for the fabrication of plasmonic patterns with applications in information storage, cryptography, and security tagging. However, the environmental sensitivity of pure Ag layers and the complexity of ceramic/metal composite film growth hinder the implementation of this technology to large-scale production, as well as its combination with flexible substrates. In the present work we investigate an alternative pathway, namely, starting from non-plasmonic multilayer metal/dielectric layers, whose growth is compatible with large scale production such as in-line sputtering and roll-to-roll deposition, which are then transformed into plasmonic templates by single-shot UV-laser annealing (LA). This entirely cold, large-scale process leads to a subsurface nanoconstruction involving plasmonic Ag nanoparticles (NPs) embedded in a hard and inert dielectric matrix on top of both rigid and flexible substrates. The subsurface encapsulation of Ag NPs provides durability and long-term stability, while the cold character of LA suits the use of sensitive flexible substrates. The morphology of the final composite film depends primarily on the nanocrystalline character of the dielectric host and its thermal conductivity. We demonstrate the emergence of a localized surface plasmon resonance, and its tunability depending on the applied fluence and environmental pressure. The results are well explained by theoretical photothermal modeling. Overall, our findings qualify the proposed process as an excellent candidate for versatile, large-scale optical encoding applications.

2.
Nanotechnology ; 26(20): 205603, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25918264

RESUMO

Perhaps the simplest method for creating metal nanoparticles on a substrate is by driving their self-assembly with the thermal annealing of a thin metal film. By properly tuning the annealing parameters one hopes to discover a recipe that allows the pre-determined design of the NP arrangement. However, thermal treatment is known for detrimental effects and is not really the manufacturer's route of choice when it comes to large-scale applications. An alternative method is the use of microwave annealing, a method that has never been applied for metal processing, due to the high reflectance of microwave radiation at the surface of a metal. However, in this work we challenge the widely used nanostructuring methods by proving the microwave's annealing ability to produce plasmonic templates, out of extremely thin metal films, by simply using a domestic microwave oven apparatus. We show that this process is generic and independent of the deposition method used for the metal and we further quantify the suitability of these plasmonic templates for use in surface-enhanced Raman scattering applications.

3.
J Nanosci Nanotechnol ; 19(11): 7374-7380, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039899

RESUMO

This study is focused on the preparation of metal (Cu, Zn) nanopowders by an electrochemical reduction/precipitation procedure, which provides the primary components for the development of CuZn alloy metallic foams. This well-controlledmethod allows straight forward control of the reaction parameters and the restriction of oxidation effects, while resulting in stable and small grain size metal nanopowders. Whether precipitation of Cu and Zn is held separately or in alternating deposition mode, the characteristics of synthesized nanopowders assist easier mixing, alloying and realization of metallic foams suitable for water treatment applications. CuZn alloy foams developed with this technique presented equivalent efficiency and lower corrosion and leaching rates compared to those prepared with commercial powder methods.

4.
Mater Sci Eng C Mater Biol Appl ; 99: 264-274, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889700

RESUMO

Heterometal oxide nanoparticles of bioessential metals are shedding new light to nanoparticle-inspired bioapplications. Pairing bioreactive elements like copper and iron can affect the redox dynamic and biological profile of the nanomaterial. Given the complexity of physicochemical properties, biological activity and toxicity concerns, extensive exploration is demanded, especially when active and less active oxidation states participate as in case of cuprous-ferric delafossite CuFeO2 (copper(I)-iron(III)), a less widespread nanomaterial. In that vein, CuFeO2 nanoparticles were synthesized and biological profile was evaluated in comparison with cuprous oxide (Cu2O NPs) counterpart, an already established antimicrobial agent. Interactions with bacteria, proteins and DNA were examined. Cu2O NPs exhibited stronger antibacterial activity (IC50 < 25 µg/ml) than CuFeO2 NPs (IC50 > 100 µg/ml). In vitro exposure of nanoparticles on plasmid DNA unveiled toxicity in the form of DNA damage for Cu2O and enhanced biocompatibility for CuFeO2 NPs. Genotoxicity estimated by the frequency of sister chromatid exchanges, cytostaticity based on the proliferating rate indices and cytotoxicity based on the mitotic indices at human peripheral lymphocyte cultures were all significantly lower in the case of CuFeO2 NPs. Furthermore, through in vitro albumin denaturation assay, CuFeO2 NPs showed better performance in protein denaturation protection, correlating in superior anti-inflammatory activity than Cu2O and similar to acetylsalicylic acid. Synergy of copper(I)-iron(III) in nanoscale is apparent and gives rise to fruitful bioapplications and perspectives.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Cobre/química , DNA/metabolismo , Compostos Férricos/farmacologia , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Proteínas/metabolismo , Albuminas/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Clivagem do DNA/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/ultraestrutura , Desnaturação Proteica/efeitos dos fármacos , Análise Espectral Raman , Difração de Raios X
5.
Sci Rep ; 8(1): 6988, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725079

RESUMO

The fabrication, by an all electrochemical process, of porous Si/ZnO nanostructures with engineered structural defects, leading to strong and broadband deep level emission from ZnO, is presented. Such nanostructures are fabricated by a combination of metal-assisted chemical etching of Si and direct current electrodeposition of ZnO. It makes the whole fabrication process low-cost, compatible with Complementary Metal-Oxide Semiconductor technology, scalable and easily industrialised. The photoluminescence spectra of the porous Si/ZnO nanostructures reveal a correlation between the lineshape, as well as the strength of the emission, with the morphology of the underlying porous Si, that control the induced defects in the ZnO. Appropriate fabrication conditions of the porous Si lead to exceptionally bright Gaussian-type emission that covers almost the entire visible spectrum, indicating that porous Si/ZnO nanostructures could be a cornerstone material towards white-light-emitting devices.

6.
Waste Manag ; 59: 237-246, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27765494

RESUMO

The vitrification process was applied for the stabilization and solidification of a rich in chromium ash that was the by-product of incineration of tannery sludge. Six different batch compositions were produced, based on silica as the glass former and sodium and calcium oxides as flux agents. As-vitrified products (monoliths) were either composed of silicate matrices with separated from the melt Eskolaite (Cr2O3) crystallites or were homogeneous glasses (in one case). All as-vitrified products were thermally treated in order to transform them to partially crystallized, i.e. devitrified products. Devitrification is an important part of the work since studying the transformation of the initial as-vitrified products into glass-ceramics with better properties could result to stabilized products with potential added value. The devitrified products were diversified by the effective crystallization mode and separated crystal phase composition. These variations originated from differences in: (a) batch composition of the initial as-vitrified products and (b) thermal treatment conditions. In devitrified products crystallization led to the separation of Devitrite (Na2Ca3Si6O16), Combeite (Na4Ca4Si6O18) and Wollastonite (CaSiO3) crystalline phases, while Eskolaite crystallites were not affected by thermal treatment. Leaching test results revealed that chromium was successfully stabilized inside the as-vitrified monoliths. Devitrification impairs chromium stabilization, only in the case where the initial as-vitrified product was a homogeneous glass. In all other cases, devitrification did not affect successful chromium stabilization.


Assuntos
Cromo/química , Esgotos/química , Curtume , Compostos de Cálcio/química , Cerâmica , Cristalização , Temperatura Alta , Incineração , Resíduos Industriais , Microscopia Eletrônica de Transmissão e Varredura , Silicatos/química , Vitrificação
7.
J Inorg Biochem ; 164: 82-90, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27665318

RESUMO

There is a growing field of research into the physicochemical properties of metal oxide nanoparticles (NPs) and their potential use against tumor formation, development and progression. Coated NPs with biocompatible surfactants can be incorporated into the natural metabolic pathway of the body and specifically favor delivery to the targeted cancerous cells versus normal cells. Polyethylene glycol (PEG) is an FDA approved, biocompatible synthetic polymer and PEGylated NPs are regarded as "stealth" nanoparticles, which are not recognized by the immune system. Herein, PEGylated cupric oxide nanoparticles (CuO NPs) with either PEG 1000 or PEG 8000 were hydrothermally prepared upon properly adjusting the reaction conditions. Depending on the reaction time CuO NPs in the range of core sizes 11-20nm were formed, while hydrodynamic sizes substantially varied (330-1120nm) with improved colloidal stability in PBS. The anticancer activity of the NPs was evaluated on human cervical carcinoma HeLa cells by using human immortalized embryonic kidney 293 FT cells as a control. Viability assays (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) revealed that CuO NPs could selectively reduce viability of tumor cells (IC50 values 11.91-25.78µg/mL). Reactive oxygen species (ROS) production, cell membrane damage and apoptotic DNA laddering were also evident by nitroblue tetrazolium (NBT) reduction, lactate dehydrogenase (LDH) release assays and DNA electrophoresis, respectively. CuO NPs strongly inhibited lipoxygenase (LOX) enzymatic activity with IC50 values 4-5.9µg/mL, highlighting in that manner their anti-inflammatory activity.


Assuntos
Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , Cobre , Fragmentação do DNA/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis , Membrana Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Células HEK293 , Células HeLa , Humanos , L-Lactato Desidrogenase/metabolismo , Lipoxigenase/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
8.
Sci Total Environ ; 535: 61-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25891685

RESUMO

The potential of magnetite nanoparticles to be applied in drinking water treatment for the removal of hexavalent chromium is discussed. In this study, a method for their preparation which combines the use of low-cost iron sources (FeSO4 and Fe2(SO4)3) and a continuous flow mode, was developed. The produced magnetite nanoparticles with a size of around 20 nm, appeared relatively stable to passivation providing a removal capacity of 1.8 µg Cr(VI)/mg for a residual concentration of 50 µg/L when tested in natural water at pH7. Such efficiency is explained by the reducing ability of magnetite which turns Cr(VI) to an insoluble Cr(OH)3 form. The successful operation of a small-scale system consisting of a contact reactor and a magnetic separator demonstrates a way for the practical introduction and recovery of magnetite nanoparticles in water treatment technology.


Assuntos
Cromo/química , Água Potável/química , Nanopartículas de Magnetita/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cromo/análise , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 283: 672-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25464309

RESUMO

A tannery sludge, produced from physico-chemical treatment of tannery wastewaters, was incinerated without any pre-treatment process under oxic and anoxic conditions, by controlling the abundance of oxygen. Incineration in oxic conditions was performed at the temperature range from 300°C to 1200°C for duration of 2h, while in anoxic conditions at the temperature range from 400°C to 600°C and varying durations. Incineration under oxic conditions at 500°C resulted in almost total oxidation of Cr(III) to Cr(VI), with CaCrO4 to be the crystalline phase containing Cr(VI). At higher temperatures a part of Cr(VI) was reduced, mainly due to the formation of MgCr2O4. At 1200°C approximately 30% of Cr(VI) was reduced to Cr(III). Incineration under anoxic conditions substantially reduced the extent of oxidation of Cr(III) to Cr(VI). Increase of temperature and duration of incineration lead to increase of Cr(VI) content, while no chromium containing crystalline phase was detected.


Assuntos
Cromo/química , Incineração , Resíduos Industriais , Esgotos/química , Curtume , Eliminação de Resíduos Líquidos/métodos , Temperatura Alta , Oxirredução , Oxigênio/química
10.
J Hazard Mater ; 262: 606-13, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24113648

RESUMO

This work examines the possibility of applying CuZn alloys as a reducing medium for the efficient removal of hexavalent chromium from drinking water. In an effort to develop a route for producing powders of CuZn alloys under mild conditions and investigate the optimum composition for such application, a series of alloys in the form of powders were prepared, by a sequence of Cu and Zn ball-milling and low temperature annealing. Batch Cr(VI) removal tests, performed to evaluate and compare the efficiency of the products under typical natural water parameters (pH 7 and natural-like water), indicated that the best performing material have a composition around 50 wt% Cu. The dominant reduction mechanisms are both the corrosion of the alloy surface and the electron transfer to the solution. The behavior of granulated CuZn media was tested in rapid-scale column tests using the commercial KDF which verified the high potential of CuZn alloys in Cr(VI) removal. Nevertheless, Cu and Zn leaching problems should be also considered.


Assuntos
Ligas/química , Cromo/química , Cobre/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zinco/química , Água Potável , Oxirredução , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA