RESUMO
A set of low molecular weight compounds containing a hydroxyethylamine (HEA) core structure with different prime side alkyl substituted 4,5,6,7-tetrahydrobenzazoles and one 4,5,6,7-tetrahydropyridinoazole was synthesized. Striking differences were observed on potencies in the BACE-1 enzymatic and cellular assays depending on the nature of the heteroatoms in the bicyclic ring, from the low active compound 4 to inhibitor 6, displaying BACE-1 IC(50) values of 44 nM (enzyme assay) and 65 nM (cell-based assay).
Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Azóis/síntese química , Benzoxazóis/síntese química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Etilaminas/síntese química , Piridinas/síntese química , Animais , Azóis/química , Azóis/farmacologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Etilaminas/química , Etilaminas/farmacologia , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Piridinas/química , Piridinas/farmacologiaRESUMO
4'-Azido-2'-deoxy-2'-methylcytidine (14) is a potent nucleoside inhibitor of the HCV NS5B RNA-dependent RNA polymerase, displaying an EC(50) value of 1.2 µM and showing moderate in vivo bioavailability in rat (F=14%). Here we describe the synthesis and biological evaluation of 4'-azido-2'-deoxy-2'-methylcytidine and prodrug derivatives thereof.
Assuntos
Antivirais/química , Citidina/análogos & derivados , Desoxicitidina/análogos & derivados , Hepacivirus/efeitos dos fármacos , Pró-Fármacos/farmacologia , Animais , Antivirais/farmacologia , Citidina/farmacologia , Desoxicitidina/farmacologia , Descoberta de Drogas , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Ratos , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacosRESUMO
To develop efficient and reliable methods for prediction of serum protein binding of drug leads, the kinetic characteristics for the interactions between selected compounds and human serum albumin and α1-acid glycoprotein have been explored using a surface plasmon resonance biosensor. Conventional methods for quantification of interactions (i.e., using rate constants or affinities determined on the basis of a reasonable mechanistic model) were applicable for only a few of the compounds. The affinity of a primary interaction and the contribution of lower affinity secondary interactions could be estimated for some compounds, but the affinity of many compounds could not be quantified by either of these methods. To have a quantification method that could be used for all compounds, independent of affinity and complexity of interaction mechanisms, the concept of "binding efficiency," analogous to "catalytic efficiency" used for enzymes, was developed. It allowed the quantification of the binding of compounds interacting with weak affinity and for which saturation is not reached within a concentration range where the compound is soluble or when the influence of interactions with secondary sites makes interpretations difficult. In addition, compounds with large fractional binding can be identified by this strategy and simply quantified relative to reference compounds. This approach will enable ranking and identification of structure-activity relationships of compounds with respect to their serum protein binding profile.
Assuntos
Proteínas Sanguíneas/análise , Descoberta de Drogas , Sítios de Ligação , Proteínas Sanguíneas/química , Interações Medicamentosas , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de SuperfícieRESUMO
Two types of P1-P3-linked macrocyclic renin inhibitors containing the hydroxyethylene isostere (HE) scaffold just outside the macrocyclic ring have been synthesized. An aromatic or aliphatic substituent (P3sp) was introduced in the macrocyclic ring aiming at the S3 subpocket (S3sp) in order to optimize the potency. A 5-6-fold improvement in both the K(i) and the human plasma renin activity (HPRA)IC(50) was observed when moving from the starting linear peptidomimetic compound 1 to the most potent macrocycle 42 (K(i) = 3.3 nM and HPRA IC(50) = 7 nM). Truncation of the prime side of 42 led to 8-10-fold loss of inhibitory activity in macrocycle 43 (K(i) = 34 nM and HPRA IC(50) = 56 nM). All macrocycles were epimeric mixtures in regard to the P3sp substituent and X-ray crystallographic data of the representative renin macrocycle 43 complex showed that only the S-isomer buried the substituent into the S3sp. Inhibitory selectivity over cathepsin D (Cat-D) and BACE-1 was also investigated for all the macrocycles and showed that truncation of the prime side increased selectivity of inhibition in favor of renin.
Assuntos
Compostos Macrocíclicos/química , Inibidores de Proteases/síntese química , Renina/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Catepsina D/antagonistas & inibidores , Catepsina D/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Renina/metabolismoRESUMO
TMC435 is a small-molecule inhibitor of the NS3/4A serine protease of hepatitis C virus (HCV) currently in phase 2 development. The in vitro resistance profile of TMC435 was characterized by selection experiments with HCV genotype 1 replicon cells and the genotype 2a JFH-1 system. In 80% (86/109) of the sequences from genotype 1 replicon cells analyzed, a mutation at NS3 residue D168 was observed, with changes to V or A being the most frequent. Mutations at NS3 positions 43, 80, 155, and 156, alone or in combination, were also identified. A transient replicon assay confirmed the relevance of these positions for TMC435 inhibitory activity. The change in the 50% effective concentrations (EC(50)s) observed for replicons with mutations at position 168 ranged from <10-fold for those with the D168G or D168N mutation to approximately 2,000-fold for those with the D168V or D168I mutation, compared to the EC(50) for the wild type. Of the positions identified, mutations at residue Q80 had the least impact on the activity of TMC435 (<10-fold change in EC(50)s), while greater effects were observed for some replicons with mutations at positions 43, 155, and 156. TMC435 remained active against replicons with the specific mutations observed after in vitro or in vivo exposure to telaprevir or boceprevir, including most replicons with changes at positions 36, 54, and 170 (<3-fold change in EC(50)s). Replicons carrying mutations affecting the activity of TMC435 remained fully susceptible to alpha interferon and NS5A and NS5B inhibitors. Finally, combinations of TMC435 with alpha interferon and NS5B polymerase inhibitors prevented the formation of drug-resistant replicon colonies.
Assuntos
Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Inibidores de Proteases/farmacologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacologia , Linhagem Celular , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Sinergismo Farmacológico , Genótipo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatite C/virologia , Humanos , Técnicas In Vitro , Interferon-alfa/farmacologia , Mutagênese , Simeprevir , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacosRESUMO
Novel NS3/4A protease inhibitors comprising quinazoline derivatives as P2 substituent were synthesized. High potency inhibitors displaying advantageous PK properties have been obtained through the optimization of quinazoline P2 substituents in three series exhibiting macrocyclic P2 cyclopentane dicarboxylic acid and P2 proline urea motifs. For the quinazoline moiety it was found that 8-methyl substitution in the P2 cyclopentane dicarboxylic acid series improved on the metabolic stability in human liver microsomes. By comparison, the proline urea series displayed advantageous Caco-2 permeability over the cyclopentane series. Pharmacokinetic properties in vivo were assessed in rat on selected compounds, where excellent exposure and liver-to-plasma ratios were demonstrated for a member of the 14-membered quinazoline substituted P2 proline urea series.
Assuntos
Proteínas de Transporte/antagonistas & inibidores , Hepacivirus/enzimologia , Inibidores de Proteases/síntese química , Quinazolinas/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Área Sob a Curva , Células CACO-2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Microssomos Hepáticos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacocinética , Inibidores de Proteases/farmacologia , Quinazolinas/química , Quinazolinas/farmacocinética , Quinazolinas/farmacologia , Relação Estrutura-AtividadeRESUMO
In a preceding study we have described the development of a new hydroxyethylene (HE) core motif displaying P1 aryloxymethyl and P1' methoxy substituents delivering potent BACE-1 inhibitors. In a continuation of this work we have now explored the SAR of the S1' pocket by introducing a set of P1' alkoxy groups and evaluated them as BACE-1 inhibitors. Previously the P1 and P1' positions of the classical HE template have been relatively little explored due to the complexity of the chemical routes involved in modifications at these positions. However, the chemistries developed for the current HE template renders substituents in both the P1 and P1' positions readily available for SAR exploration. The BACE-1 inhibitors prepared displayed K(i) values in the range of 1-20 nM, where the most potent compounds featured small P1' groups. The cathepsin D selectivity which was high for the smallest P1' substituents (P1'=ethoxy, fold selectively >1500) dropped for larger groups (P1'=benzyloxy, fold selectivity of 3). We have also confirmed the importance of both the hydroxyl group and its stereochemistry preference for this HE transition state isostere by preparing both the deoxygenated analogue and by inverting the configuration of the hydroxyl group to the R-configuration, which as expected resulted in large activity drops. Finally substituting the hydroxyl group by an amino group having the same configuration (S), which previously have been described to deliver potent BACE-1 inhibitors with advantageous properties, surprisingly resulted in a large drop in the inhibitory activity.
Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Etilenos/química , Cristalografia por Raios X , Inibidores Enzimáticos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Relação Estrutura-AtividadeRESUMO
The hepatitis C virus (HCV) NS3/4A serine protease has been explored as a target for the inhibition of viral replication in preclinical models and in HCV-infected patients. TMC435350 is a highly specific and potent inhibitor of NS3/4A protease selected from a series of novel macrocyclic inhibitors. In biochemical assays using NS3/4A proteases of genotypes 1a and 1b, inhibition constants of 0.5 and 0.4 nM, respectively, were determined. TMC435350 inhibited HCV replication in a cellular assay (subgenomic 1b replicon) with a half-maximal effective concentration (EC(50)) of 8 nM and a selectivity index of 5,875. The compound was synergistic with alpha interferon and an NS5B inhibitor in the replicon model and additive with ribavirin. In rats, TMC435350 was extensively distributed to the liver and intestinal tract (tissue/plasma area under the concentration-time curve ratios of >35), and the absolute bioavailability was 44% after a single oral administration. Compound concentrations detected in both plasma and liver at 8 h postdosing were above the EC(99) value measured in the replicon. In conclusion, given the selective and potent in vitro anti-HCV activity, the potential for combination with other anti-HCV agents, and the favorable pharmacokinetic profile, TMC435350 has been selected for clinical development.
Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Quimioterapia Combinada , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Humanos , Interferon-alfa/administração & dosagem , Masculino , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Simeprevir , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Distribuição Tecidual , Replicação Viral/efeitos dos fármacosRESUMO
A lead optimization library consisting of 800 HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs) was screened in parallel against 4 clinically relevant variants of HIV-1 RT (Wt, L100I, Y181C, and K103N) using a surface plasmon resonance-based biosensor. The aim was to identify inhibitors suitable in specific topical microbicides efficient for preventing the transmission of a range of clinically significant strains of HIV-1. The authors hypothesized that such compounds should have high affinity and slow dissociation rates for multiple variants of the target. To efficiently analyze the large amount of real-time data (sensorgrams) that were generated in the screening, they initially used signals from 3 selected time points to identify compounds with high affinity and slow dissociation for the complete panel of enzyme variants. Hits were confirmed by visually inspecting the complete sensorgrams. Two structurally unrelated compounds fulfilled the hit criteria, but only 1 compound was found to (a) compete with a known NNRTI for binding to the NNRTI site, (b) inhibit HIV-1 RT activity, and (c) inhibit HIV-1 replication in cell culture, for all 4 enzyme variants. This novel screening methodology offers high-resolution real-time kinetic data for multiple targets in parallel. It is expected to have broad applicability for the discovery of compounds with defined kinetic profiles, crucial for optimal therapeutic effects.
Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Proteínas Mutantes/metabolismo , Inibidores da Transcriptase Reversa/análise , Inibidores da Transcriptase Reversa/farmacologia , Ligação Competitiva/efeitos dos fármacos , Técnicas Biossensoriais , Enzimas Imobilizadas/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Concentração Inibidora 50 , Cinética , Inibidores da Transcriptase Reversa/química , Replicação Viral/efeitos dos fármacosRESUMO
We have identified 1H-benzylindole analogues as a novel series of human immunodeficiency virus (HIV) integrase inhibitors with antiretroviral activities against different strains of HIV type 1 (HIV-1), HIV-2, and simian immunodeficiency virus strain MAC(251) [SIV(MAC(251))]. Molecular modeling and structure-activity relationship-based optimization resulted in the identification of CHI/1043 as the most potent congener. CHI/1043 inhibited the replication of HIV-1(III(B)) in MT-4 cells at a 50% effective concentration (EC(50)) of 0.60 microM, 70-fold below its cytotoxic concentration. Equal activities against HIV-1(NL4.3), HIV-2(ROD), HIV-2(EHO), and SIV(MAC(251)) were observed. CHI/1043 was equally active against virus strains resistant against inhibitors of reverse transcriptase or protease. Replication of both X4 and R5 strains in peripheral blood mononuclear cells was sensitive to the inhibitory effect of CHI/1043 (EC(50), 0.30 to 0.38 microM). CHI/1043 inhibited integrase strand transfer activity in oligonucleotide-based enzymatic assays at low micromolar concentrations. Time-of-addition experiments confirmed CHI/1043 to interfere with the viral replication cycle at the time of retroviral integration. Quantitative Alu PCR corroborated that the anti-HIV activity is based upon the inhibition of proviral DNA integration. An HIV-1 strain selected for 70 passages in the presence of CHI/1043 was evaluated genotypically and phenotypically. The mutations T66I and Q146K were present in integrase. Cross-resistance to other integrase strand transfer inhibitors, such as L-708,906, the naphthyridine analogue L-870,810, and the clinical drugs GS/9137 and MK-0518, was observed. In adsorption, distribution, metabolism, excretion, and toxicity studies, antiviral activity was strongly reduced by protein binding, and metabolization in human liver microsomes was observed. Transport studies with Caco cells suggest a low oral bioavailability.
Assuntos
Inibidores de Integrase de HIV/farmacologia , HIV/efeitos dos fármacos , Indóis/farmacologia , Integrases/metabolismo , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , HIV/enzimologia , HIV/genética , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/química , Humanos , Indóis/síntese química , Indóis/química , Integrases/genética , Estrutura Molecular , Reação em Cadeia da Polimerase , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
A novel series of P3-truncated macrocyclic HCV NS3/4A protease inhibitors containing a P2 proline-urea or carbamate scaffold was synthesized. Very potent inhibitors were obtained through the optimization of the macrocycle size, urea and proline substitution, and bioisosteric replacement of the P1 carboxylic acid moiety. Variation of the lipophilicity by introduction of small lipophilic substituents resulted in improved PK profiles, ultimately leading to compound 13Bh, an extremely potent (K(i)=0.1 nM, EC(50)=4.5 nM) and selective (CC(50) (Huh-7 cells)>50 microM) inhibitor, displaying an excellent PK profile in rats characterized by an oral bioavailability of 54% and a high liver exposure after oral administration.
Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Prolina/síntese química , Prolina/farmacologia , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Ureia/análogos & derivados , Ureia/síntese química , Ureia/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Administração Oral , Animais , Antivirais/química , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Técnicas de Química Combinatória , Desenho de Fármacos , Masculino , Modelos Moleculares , Estrutura Molecular , Prolina/análogos & derivados , Prolina/química , Ratos , Ratos Sprague-Dawley , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade , Ureia/químicaRESUMO
SAR analysis performed with a limited set of cyclopentane-containing macrocycles led to the identification of N-[17-[2-(4-isopropylthiazole-2-yl)-7-methoxy-8-methylquinolin-4-yloxy]-13-methyl-2,14-dioxo-3,13-diazatricyclo [13.3.0.0(4,6)]octadec-7-ene-4-carbonyl](cyclopropyl)sulfonamide (TMC435350, 32c) as a potent inhibitor of HCV NS3/4A protease (K(i)=0.36nM) and viral replication (replicon EC(50)=7.8nM). TMC435350 also displayed low in vitro clearance and high permeability, which were confirmed by in vivo pharmacokinetic studies. TMC435350 is currently being evaluated in the clinics.
Assuntos
Proteínas de Transporte/antagonistas & inibidores , Ciclopentanos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Macrocíclicos/farmacologia , Inibidores de Proteases/farmacologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Animais , Células CACO-2 , Linhagem Celular , Ciclopentanos/química , Cães , Hepatite C/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Compostos Macrocíclicos/química , Masculino , Inibidores de Proteases/química , Ratos , Ratos Sprague-Dawley , Simeprevir , Relação Estrutura-Atividade , Sulfonamidas/químicaRESUMO
New and potent inhibitors of the malarial aspartic proteases plasmepsin (Plm) I and II, from the deadliest malaria parasite Plasmodium falciparum, have been synthesized utilizing Suzuki coupling reactions on previously synthesized bromobenzyloxy-substituted statine-like inhibitors. The enzyme inhibition activity has been improved up to eight times by identifying P1 substituents that effectively bind to the continuous S1-S3 crevice of Plasmepsin I and II. By replacement of the bromo atom in the P1 p-bromobenzyloxy-substituted inhibitors with different aryl substituents, several inhibitors exhibiting K(i) values in the low nanomolar range for both Plm I and II have been identified. Some of these inhibitors are also effective in attenuating parasite growth in red blood cells, with the best inhibitors, compounds 2 and 4, displaying 70% and 83% inhibition, respectively, at a concentration of 5 microM. The design was partially guided by the X-ray crystal structure disclosed herein of the previously synthesized inhibitor 1 in complex with plasmepsin II.
Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Plasmodium falciparum/enzimologia , Animais , Antiprotozoários/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários , Relação Estrutura-AtividadeAssuntos
Proteínas de Transporte/antagonistas & inibidores , Compostos Heterocíclicos com 3 Anéis/química , Compostos Macrocíclicos/química , Inibidores de Proteases/química , Sulfonamidas/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Inibidores de Proteases/farmacologia , Ligação Proteica , Simeprevir , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismoRESUMO
Despite the availability of large amounts of data for HIV-protease inhibitors and their effectiveness with wild type and resistant enzyme, there is limited knowledge about how this and other information can be systematically applied to the development of new antiviral compounds. To identify in vitro parameters that correlate with the efficacy of HIV inhibitors in cell culture, the relationships between inhibition, interaction kinetic, and cell culture parameters for HIV-1 protease inhibitors were analyzed. Correlation, cluster, and principal component analysis of data for 37 cyclic and linear compounds revealed that the affinities (K(D)) determined from SPR-biosensor binding studies correlated better to cell culture efficacy (ED(50)) than that of the inhibition constants (K(i)), indicating that the conventional use of K(i) values for structure-activity relationship analysis of HIV-1 inhibitors should be seriously reconsidered. The association and dissociation kinetic rate constants (k(on) and k(off)) alone showed weak correlations with ED(50) values. However, ED(50) values were most related to the free enzyme concentration in the viral particle ([E]), calculated from the rate constants and the total enzyme concentration in a viral particle. A structure-activity relationship analysis of the current data set was found to be valid for all classes of compounds analyzed. In summary, use of affinity, based on interaction kinetic rate constants, rather than inhibition constants, and theoretical consideration of the physiological conditions in the virus particle provide improved structure-activity relationship analysis of HIV-1 protease inhibitors.
Assuntos
Inibidores da Protease de HIV/química , Protease de HIV/química , HIV-1/química , Técnicas Biossensoriais , Células Cultivadas , Análise por Conglomerados , Protease de HIV/metabolismo , Inibidores da Protease de HIV/classificação , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Cinética , Análise de Componente Principal , Relação Quantitativa Estrutura-Atividade , Replicação Viral/efeitos dos fármacosRESUMO
A series of protease inhibitors targeted at the malarial enzymes plasmepsin I and II, and encompassing a basic hydroxyethylamine transition state isostere scaffold, was prepared. The substituents in the P1' position were varied and the biological activities expressed in K(i)-values ranged from 60 to >2000 nM. A more than 4-fold selectivity for either of the plasmepsins could be achieved. All of the active compounds exhibited high preference for the plasmepsins over cathepsin D, the most closely related human protease. A few active compounds were shown to inhibit parasite growth in cultured infected human erythrocytes. An ED(50) value as low as 1.6 microM was observed for one of the inhibitors despite K(i) values of 115 nM (Plm I) and 121 nM (Plm II).
Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Eritrócitos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/síntese química , Animais , Células Cultivadas , Eritrócitos/parasitologia , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas de ProtozoáriosRESUMO
Picomolar to low nanomolar inhibitors of the two aspartic proteases plasmepsin (Plm) I and II, from the malaria parasite Plasmodium falciparum, have been identified from sets of libraries containing novel statine-like templates modified at the amino and carboxy terminus. The syntheses of the novel statine templates were carried out in solution phase using efficient synthetic routes and resulting in excellent stereochemical control. The most promising statine template was attached to solid support and diversified by use of parallel synthesis. The products were evaluated for their Plm I and II inhibitory activity as well as their selectivity over cathepsin D. Selected inhibitors were, in addition, evaluated for their inhibition of parasite growth in cultured infected human red blood cells. The most potent inhibitor in this report, compound 16, displays Ki values of 0.5 and 2.2 nM for Plm I and II, respectively. Inhibitor 16 is also effective in attenuating parasite growth in red blood cells showing 51% inhibition at a concentration of 5 microM. Several inhibitors have been identified that exhibit Ki values between 0.5 and 74 nM for both Plm I and II. Some of these inhibitors also show excellent selectivity vs cathepsin D.
Assuntos
Acrilonitrila/síntese química , Antimaláricos/síntese química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Dipeptídeos/síntese química , Tiofenos/síntese química , Acrilonitrila/análogos & derivados , Acrilonitrila/química , Acrilonitrila/farmacologia , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/química , Catepsina D/antagonistas & inibidores , Catepsina D/química , Técnicas de Química Combinatória , Dipeptídeos/química , Dipeptídeos/farmacologia , Humanos , Modelos Moleculares , Mimetismo Molecular , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários , Estereoisomerismo , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/farmacologiaRESUMO
Although hepatitis C virus (HCV) is a pathogen of global significance, experimental therapies in current clinical development include highly efficacious all-oral combinations of HCV direct-acting antivirals (DAAs). If approved for use, these new treatment regimens will impact dramatically upon our capacity to eradicate HCV in the majority of virus-infected patients. However, recent data from late-stage clinical evaluations demonstrated that individuals infected with HCV genotype (GT) 3 responded less well to all-oral DAA combinations than patients infected with other HCV GTs. In light of these observations, the present study sought to expand the number of molecular tools available to investigate small molecule-mediated inhibition of HCV GT3 NS5A and NS5B proteins in preclinical tissue-culture systems. Accordingly, a novel subgenomic HCV replicon chimera was created by utilizing a GT1b backbone modified to produce NS5A and NS5B proteins from a consensus sequence generated from HCV GT3a genomic sequences deposited online at the European Hepatitis C Virus database. This approach avoided the need to isolate and amplify HCV genomes from sera derived from HCV-infected patients. The replicon chimera, together with a version engineered to express NS5A encoding a Y93H mutation, demonstrated levels of replication in transient assays robust enough to assess accurate antiviral activities of inhibitors representing different HCV DAA classes. Thus, the replicon chimera represents a new simple molecular tool suitable for drug discovery programmes aimed at investigating, understanding, and improving GT3a activities of HCV DAAs targeting NS5A or NS5B.
Assuntos
Hepacivirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Virologia/métodos , Replicação Viral , Avaliação Pré-Clínica de Medicamentos/métodos , Genótipo , Hepacivirus/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Replicon , Proteínas não Estruturais Virais/genéticaRESUMO
Seven novel tertiary alcohol containing linear HIV-1 protease inhibitors (PIs), decorated at the para position of the benzyl group in the P1' side with (hetero)aromatic moieties, were synthesized and biologically evaluated. To study the inhibition and antiviral activity effect of P1-P3 macrocyclization, 14- and 15-membered macrocyclic PIs were prepared by ring-closing metathesis of the corresponding linear PIs. The macrocycles were more active than the linear precursors and compound 10f, with a 2-thiazolyl group in the P1' position, was the most potent PI of this new series (Ki 2.2 nM, EC50 0.2 µM). Co-crystallized complexes of both linear and macrocyclic PIs with the HIV-1 protease enzyme were prepared and analyzed.
Assuntos
Álcoois/síntese química , Inibidores da Protease de HIV/síntese química , Protease de HIV/química , HIV-1/efeitos dos fármacos , Hidrazinas/síntese química , Compostos Macrocíclicos/síntese química , Peptídeos Cíclicos/síntese química , Álcoois/química , Álcoois/farmacologia , Linhagem Celular , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Protease de HIV/metabolismo , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Humanos , Hidrazinas/química , Hidrazinas/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Modelos Moleculares , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Development of allosteric inhibitors into efficient drugs is hampered by their indirect mode-of-action and complex structure-kinetic relationships. To enable the design of efficient allosteric drugs targeting the polymerase of hepatitis C virus (NS5B), the interaction characteristics of three non-nucleoside compounds (filibuvir, VX-222, and tegobuvir) inhibiting HCV replication via NS5B have been analyzed. Since there was no logical correlation between the anti-HCV replicative and enzyme inhibitory effects of the compounds, surface plasmon resonance biosensor technology was used to resolve the mechanistic, kinetic, thermodynamic and chemodynamic features of their interactions with their target and their effect on its interaction with RNA. Tegobuvir could not be seen to interact with NS5B at all while filibuvir interacted in a single reversible step (except at low temperatures) and VX-222 in two serial steps, interpreted as an induced fit mechanism. Both filibuvir and VX-222 interfered with the interaction between NS5B and RNA. They competed for binding to the enzyme, suggesting that they had a common inhibition mechanism and identical or overlapping binding sites. The greater anti-HCV replicative activity of VX-222 over filibuvir is hypothesized to be due to a greater allosteric conformational effect, resulting in the formation of a less catalytically competent complex. In addition, the induced fit mechanism of VX-222 gives it a kinetic advantage over filibuvir, exhibited as a longer residence time. These insights have important consequences for the selection and optimization of new allosteric NS5B inhibitors.