RESUMO
Plant pathogenic bacteria in the genus Erwinia cause economically important diseases, including bacterial wilt of cucurbits caused by Erwinia tracheiphila. Conventional bactericides are insufficient to control this disease. Using high-throughput screening, 464 small molecules (SMs) with either cidal or static activity at 100 µM against a cucumber strain of E. tracheiphila were identified. Among them, 20 SMs (SM1 to SM20), composed of nine distinct chemical moiety structures, were cidal to multiple E. tracheiphila strains at 100 µM. These lead SMs had low toxicity to human cells and honey bees at 100 µM. No phytotoxicity was observed on melon plants at 100 µM, except when SM12 was either mixed with Silwet L-77 and foliar sprayed or when delivered through the roots. Lead SMs did not inhibit the growth of beneficial Pseudomonas and Enterobacter species but inhibited the growth of Bacillus species. Nineteen SMs were cidal to Xanthomonas cucurbitae and showed >50% growth inhibition against Pseudomonas syringae pv. lachrymans. In addition, 19 SMs were cidal or static against Erwinia amylovora in vitro. Five SMs demonstrated potential to suppress E. tracheiphila when foliar sprayed on melon plants at 2× the minimum bactericidal concentration. Thirteen SMs reduced Et load in melon plants when delivered via roots. Temperature and light did not affect the activity of SMs. In vitro cidal activity was observed after 3 to 10 h of exposure to these five SMs. Here, we report 19 SMs that provide chemical scaffolds for future development of bactericides against plant pathogenic bacterial species.
Assuntos
Cucurbitaceae , Erwinia , Animais , Peso Molecular , Doenças das PlantasRESUMO
Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.