RESUMO
Apparent parallels between natural language and antibody sequences have led to a surge in deep language models applied to antibody sequences for predicting cognate antigen recognition. However, a linguistic formal definition of antibody language does not exist, and insight into how antibody language models capture antibody-specific binding features remains largely uninterpretable. Here we describe how a linguistic formalization of the antibody language, by characterizing its tokens and grammar, could address current challenges in antibody language model rule mining.
Assuntos
Anticorpos , Linguística , Humanos , Anticorpos/imunologiaRESUMO
Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.
Assuntos
Antineoplásicos Imunológicos , Inteligência Artificial , Algoritmos , Anticorpos Monoclonais/uso terapêutico , Aprendizado de MáquinaRESUMO
Machine learning (ML) is a key technology for accurate prediction of antibody-antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody-antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.