Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 215(0): 379-392, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31144688

RESUMO

For decades, reports have suggested that photo-catalytic nitrogen fixation by titania in an aqueous environment is possible. Yet a consensus does not exist regarding how the reaction proceeds. Furthermore, the presence of an aqueous protonated solvent and the similarity between the redox potential for nitrogen and proton reduction suggest that ammonia production is unlikely. Here, we re-investigate photo-catalytic nitrogen fixation by titania in an aqueous environment through a series of photo-catalytic and electrocatalytic experiments. Photo-catalytic testing reveals that mineral phase and metal dopants play a marginal role in promoting nitrogen photofixation, with ammonia production increasing when the majority phase is rutile and with iron dopants. However, the presence of a trace amount of adsorbed carbonaceous species increased the rate of ammonia production by two times that observed without adsorbed carbon based species. This suggests that carbon species play a potential larger role in mediating the nitrogen fixation process over mineral phase and metal dopants. We also demonstrate an experimental approach aimed to detect low-level ammonia production from photo-catalysts using rotating ring disk electrode experiments conducted with and without illumination. Consistent with the photocatalysis, ammonia is only discernible at the ring with rutile phase titania, but not with mixed-phase titania. Rotating ring disk electrode experiments may also provide a new avenue to attain a higher degree of precision in detecting ammonia at low levels.


Assuntos
Carbono/química , Fixação de Nitrogênio , Titânio/química , Catálise , Técnicas Eletroquímicas , Processos Fotoquímicos , Propriedades de Superfície , Água/química
2.
Phys Chem Chem Phys ; 19(43): 29429-29437, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29077114

RESUMO

Nickel supported CdIn2S4 (Ni-CIS) spongy-like spheres have been developed using alcoholysis followed by a sulfidation process. The formation of nanocrystalline-single phase CdIn2S4 was confirmed using X-ray diffraction studies. Electron microscopy images showed that the spongy-like spheres are composed of CdIn2S4 nanoparticles with average sizes of around 25 nm. X-ray photoelectron spectra indicated the presence of elements with their respective stable oxidation states that led to the formation of single phase CdIn2S4 with enhanced structural integrity and chemical composition. The absorption spectra indicated the visible light activity of the material and the band gap energy is deduced to be 2.23 eV. The photocatalytic efficiency of the synthesized Ni-CIS in relation to its ability to produce hydrogen under solar light irradiation is estimated to be 1060 µmol g-1 h-1, which is around 5.5 and 3.6 fold higher than that of Pt-CIS (180 µmol g-1 h-1) and Pd-CIS (290 µmol g-1 h-1), respectively, as obtained in this study. Accordingly, the mechanism of the observed efficiency of the Ni-CIS nanoparticles is also proposed. The recyclability test showed consistent hydrogen evolution efficiency over 3 cycles (9 h), which essentially revealed the excellent photo- and chemical-stability of the photocatalyst. The strategy to utilize non-noble metals such as Ni, rather than noble-metals, as a co-catalyst opens up a new possibility to develop low cost and high-performance sunlight-driven photocatalysts as achieved in this study.

3.
Chemosphere ; 303(Pt 1): 134861, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35584713

RESUMO

The use of tetracycline hydrochloride (TCH) for veterinary, human therapy, and agriculture has risen in the past few decades, making it to become one of the most exploited antibiotics. However, TCH residue in the environment is causing issues related to the evolution of antibiotic-resistant bacteria. To address such a problem, photodegradation offers a potential solution to decompose these pollutants in wastewater and thereby mitigates negative environmental impacts. In this context, the research focuses on the use of the rare-earth metal oxide samarium orthovanadate (SmVO4) with nanorod structure, coupled with UiO-66-NH2 for the photocatalytic degradation. Their photocatalytic activity to degrade antibiotic TCH molecules is explored under simulated solar light irradiation. The integration of UiO-66-NH2 with SmVO4 enhanced the light absorption, recombination resistance, carrier lifetime (from 0.382 to 0.411 ns) and specific surface area (from 67.17 to 246 m2/g) of the composite system as confirmed from multiple analyses. The obtained results further indicated that SmVO4/UiO-66-NH2 nanocomposites could form a direct Z-scheme based heterojunction. Such mechanism of charge transfer leads to the effective degradation of TCH molecules up to 50% in 90 min under solar light, while it is degraded only 30% in the case of bare-SmVO4 nanorods. In this work, the incorporation of UiO-66-NH2 positively influences photoelectrochemical properties and improves the overall photoredox properties of SmVO4 for the degradation of complex compounds like antibiotic TCH molecules. Therefore, UiO-66-NH2 can be proposed as an effective material to sensitize the rare-earth based photocatalytic material.


Assuntos
Nanocompostos , Tetraciclina , Antibacterianos , Catálise , Humanos , Estruturas Metalorgânicas , Nanocompostos/química , Ácidos Ftálicos , Luz Solar
4.
ACS Sustain Chem Eng ; 8(32): 12321-12330, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32832280

RESUMO

Photoelectrochemical (PEC) nitrogen fixation has opened up new possibilities for the production of ammonia from water and air under mild conditions, but this process is confronted by the inherent challenges associated with theoretical and experimental works, limiting the efficiency of the nitrogen reduction reaction. Herein, we report for the first time a novel and efficient photoelectrocatalytic system, which has been prepared by assembling plasmonic Au nanoparticles with Fe-doped W18O49 nanorods (denoted as WOF-Au). (i) The introduction of exotic Fe atoms into nonstoichiometric W18O49 can eliminate bulk defects of the W18O49 host, which resulted in narrowing bandgap energy and facilitating electron-hole separation and transportation. (ii) Meanwhile, Au nanoparticles combined with a semiconductor induce the localized surface plasmon resonance and generate energetic (hot) electrons, increasing electron density on W18O49 nanorods. Consequently, this plasmonic WOF-Au system shows an NH3 production yield of 9.82 µg h-1 cm-2 at -0.65 V versus Ag/AgCl, which is ∼2.5-folds higher than that of the WOF (without Au loading), as well as very high stability, and no NH3 formation was found for the bare W18O49 (WO). This high activity can be associated with the synergistic effects between the Fe dopant and plasmonic Au NPs on the host semiconductor W18O49. This work can bring some insights into the target-directed design of efficient plasmonic hybrid systems for N2 fixation and artificial photocatalysis.

5.
ChemSusChem ; 11(5): 809-820, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316318

RESUMO

The photoassisted catalytic reaction, conventionally known as photocatalysis, is expanding into the field of energy and environmental applications. It is widely known that the discovery of TiO2 -assisted photochemical reactions has led to several unique applications, such as degradation of pollutants in water and air, hydrogen production through water splitting, fuel conversion, cancer treatment, antibacterial activity, self-cleaning glasses, and concrete. These multifaceted applications of this phenomenon can be enriched and expanded further if this process is equipped with more tools and functions. The term "photoassisted" catalytic reactions clearly emphasizes that photons are required to activate the catalyst; this can be transcended even into the dark if electrons are stored in the material for the later use to continue the catalytic reactions in the absence of light. This can be achieved by equipping the photocatalyst with an electron-storage material to overcome current limitations in photoassisted catalytic reactions. In this context, this article sheds lights on the materials and mechanisms of photocatalytic reactions under light and dark conditions. The manifestation of such systems could be an unparalleled technology in the near future that could influence all spheres of the catalytic sciences.


Assuntos
Elétrons , Processos Fotoquímicos , Catálise , Escuridão , Luz , Fótons
6.
J Colloid Interface Sci ; 485: 144-151, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27662026

RESUMO

We report a new route for the direct synthesis of γ-alumina nanocrystals with size and shape control in the presence of oleylamine as the capping agent. Their morphology can be controlled from nanospheres to nanorods by simply tuning a proper amount of concentrated nitric acid (67%) in the synthetic mixture. The as-made nanoparticle products after calcination show γ-alumina nano-size with unique porosity and high specific surface area and retained morphology. The XRD patterns of these calcined samples exhibit broad diffraction lines which are characteristic of nanocrystal size of γ-alumina. This synthesis procedure has been extended to the one-pot synthesis of nano-alumina based Ag catalysts with spherical and rod-shaped nano-alumina morphologies. Selective catalytic reduction (SCR) of NO with C3H6 over these catalysts was investigated. The results were compared to those of the conventional Ag/γ-Al2O3 and γ-nanoalumina alone. These nano-alumina based Ag catalysts exhibit excellent NO reduction activity in the presence of C3H6. Even in the presence of large oxygen concentration (15%), N2 yields as high as ∼90% at quite low temperature (∼350°C) have been achieved. The significantly high catalytic activity of this new type of nanocatalysts can also be attributed to their high surface area and good dispersion of silver species in the alumina matrix as well as the synergism and new properties that arise at the silver-nanoalumina interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA