Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 137(6): 1062-75, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19524509

RESUMO

Allelic loss of the essential autophagy gene beclin1 occurs in human cancers and renders mice tumor-prone suggesting that autophagy is a tumor-suppression mechanism. While tumor cells utilize autophagy to survive metabolic stress, autophagy also mitigates the resulting cellular damage that may limit tumorigenesis. In response to stress, autophagy-defective tumor cells preferentially accumulated p62/SQSTM1 (p62), endoplasmic reticulum (ER) chaperones, damaged mitochondria, reactive oxygen species (ROS), and genome damage. Moreover, suppressing ROS or p62 accumulation prevented damage resulting from autophagy defects indicating that failure to regulate p62 caused oxidative stress. Importantly, sustained p62 expression resulting from autophagy defects was sufficient to alter NF-kappaB regulation and gene expression and to promote tumorigenesis. Thus, defective autophagy is a mechanism for p62 upregulation commonly observed in human tumors that contributes directly to tumorigenesis likely by perturbing the signal transduction adaptor function of p62-controlling pathways critical for oncogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Neoplasias/metabolismo , Aneuploidia , Animais , Apoptose , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , NF-kappa B/metabolismo , Neoplasias/genética , Estresse Oxidativo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteína Sequestossoma-1 , Fator de Transcrição TFIIH , Fatores de Transcrição
2.
Clin Kidney J ; 11(1): 130-135, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29423212

RESUMO

Oxidative stress plays a key role in the pathophysiological process of uremia and its complications, particularly in cardiovascular disease. The level of oxidative stress markers is known to increase as chronic kidney disease progresses and correlates significantly with the level of renal function. Hemodialysis and peritoneal dialysis are major modes of renal replacement therapy for end-stage renal disease patients, but unfortunately they are also accompanied by increased oxidative stress. Successful kidney transplantation, however, results in near normalization of the antioxidant status and lipid metabolism by eliminating free radicals despite the surge of oxidative stress caused by the surgical procedure and ischemic injury to the organ during the operation. This success is associated with both improved renal function, reduced cardiovascular complications and overall improved morbidity and mortality. Measuring oxidative stress markers such as malondialdehyde is promising in predicting allograft survival and delayed graft function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA