Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Chem Phys ; 158(15)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37093989

RESUMO

Colloidal nanorods based on CdS or CdSe, functionalized with metal particles, have proven to be efficient catalysts for light-driven hydrogen evolution. Seeded CdSe@CdS nanorods have shown increasing performance with increasing rod length. This observation was rationalized by the increasing lifetime of the separated charges, as a large distance between holes localized in the CdSe seed and electrons localized at the metal tip decreases their recombination rate. However, the impact of nanorod length on the electron-to-tip localization efficiency or pathway remained an open question. Therefore, we investigated the photo-induced electron transfer to the metal in a series of Ni-tipped CdSe@CdS nanorods with varying length. We find that the transfer processes occurring from the region close to the semiconductor-metal interface, the rod region, and the CdSe seed region depend in different ways on the rods' length. The rate of the fastest process from excitonic states generated directly at the interface is independent of the rod length, but the relative amplitude decreases with increasing rod length, as the weight of the interface region is decreasing. The transfer of electrons to the metal tip from excitons generated in the CdS rod region depends strongly on the length of the nanorods, which indicates an electron transport-limited process, i.e., electron diffusion toward the interface region, followed by fast interface crossing. The transfer originating from the CdSe excitonic states again shows no significant length dependence in its time constant, as it is probably limited by the rate of overcoming the shallow confinement in the CdSe seed.

2.
Nano Lett ; 22(24): 9783-9785, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36472889

RESUMO

The existence of a reduced Schottky barrier at the nanoscale junction between semiconductor and metal domains has yet to be acknowledged among the photocatalysis community, despite its critical role in dictating the quality and functionality of the hybrid photocatalytic system.


Assuntos
Semicondutores
3.
Chem Soc Rev ; 50(2): 1407-1437, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33295371

RESUMO

Research on light-driven catalysis has gained tremendous importance due to the ever-increasing power consumption and the threatening situation of global warming related to burning fossil fuels. Significant efforts have been dedicated to artificial photosynthesis mimicking nature to split H2O into H2 and O2 by solar energy. Novel semiconductor und molecular photocatalysts focusing on one-step excitation processes via single component photocatalysts or via two-step excitation processes mimicking the Z-scheme of natural photosynthesis are currently developed. Analytical and physicochemical methods, which provide information at different time and length scales, are used to gain fundamental understanding of all processes leading to catalytic activity, i.e., light absorption, charge separation, transfer of charges to the reaction centres and catalytic turnover, but also understanding degradation processes of the photocatalytic active material. Especially, molecular photocatalysts still suffer from limited long-term stability due to the formation of reactive intermediates, which may lead to degradation. Although there is an overwhelming number of research articles and reviews focussing on various materials for photocatalytic water splitting, to date only few reviews have been published providing a comprehensive overview on methods for characterizing such materials. This review will highlight spectroscopic, spectroelectrochemical, and electrochemical approaches in respect to their potential in studying processes in semiconductor and (supra)molecular photocatalysts. Special emphasis will be on spectroscopic methods to investigate light-induced processes in intermediates of sequential electron transfer chains. Further, microscopic characterization methods, which are predominantly used for semiconducting and hybrid photocatalytic materials will be reviewed as surface area, structure, facets, defects, and bulk properties such as crystallinity and crystal size are key parameters for charge separation, transfer processes and suppression of charge recombination. Recent developments in scanning probe microscopy will also be highlighted as such techniques are highly suited for studying photocatalytic active material.

4.
Angew Chem Int Ed Engl ; 61(17): e202117499, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35107199

RESUMO

The high natural abundance of aluminium makes the respective fluorophores attractive for various optical applications, but photoluminescence quantum yields above 0.7 have yet not been reported for solutions of aluminium complexes. In this contribution, a dinuclear aluminium(III) complex featuring enhanced photoluminescence properties is described. Its facile one-pot synthesis originates from a readily available precursor and trimethyl aluminium. In solution, the complex exhibits an unprecedented photoluminescence quantum yield near unity (Φabsolute 1.0±0.1) and an excited-state lifetime of 2.3 ns. In the solid state, J-aggregation and aggregation-caused quenching are noted, but still quantum yields of 0.6 are observed. Embedding the complex in electrospun non-woven fabrics yields a highly fluorescent fleece possessing a quantum yield of 0.9±0.04.

5.
Angew Chem Int Ed Engl ; 61(20): e202202079, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35178850

RESUMO

Inspired by the active center of the natural [FeFe] hydrogenases, we designed a compact and precious metal-free photosensitizer-catalyst dyad (PS-CAT) for photocatalytic hydrogen evolution under visible light irradiation. PS-CAT represents a prototype dyad comprising π-conjugated oligothiophenes as light absorbers. PS-CAT and its interaction with the sacrificial donor 1,3-dimethyl-2-phenylbenzimidazoline were studied by steady-state and time-resolved spectroscopy coupled with electrochemical techniques and visible light-driven photocatalytic investigations. Operando EPR spectroscopy revealed the formation of an active [FeI Fe0 ] species-in accordance with theoretical calculations-presumably driving photocatalysis effectively (TON≈210).


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Catálise , Hidrogênio/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Luz
6.
Chemistry ; 27(12): 4081-4088, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33241590

RESUMO

In this work, we present a new synthetic strategy for fourfold-substituted perylene monoimides via tetrabrominated perylene monoanhydrides. X-ray diffraction analysis unveiled the intramolecular stacking orientation between the substituents and semicircular packing behavior. We observed the remarkable influence of the substituent on the longevity and nature of the excited state upon visible light excitation. In the presence of poly(dehydroalanine)-graft-poly(ethylene glycol) graft copolymers as solubilizing template, the chromophores are capable of sensitizing [Mo3 S13 ]2- clusters in aqueous solution for stable visible light driven hydrogen evolution over three days.

7.
Inorg Chem ; 60(12): 9157-9173, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34081456

RESUMO

Photoactive metal complexes containing earth-abundant transition metals recently gained interest as photosensitizers in light-driven chemistry. In contrast to the traditionally employed ruthenium or iridium complexes, iron complexes developed to be promising candidates despite the fact that using iron complexes as photosensitizers poses an inherent challenge associated with the low-lying metal-centered states, which are responsible for ultrafast deactivation of the charge-transfer states. Nonetheless, recent developments of strongly σ-donating carbene ligands yielded highly promising systems, in which destabilized metal-centered states resulted in prolonged lifetimes of charge-transfer excited states. In this context, we introduce a series of novel homoleptic Fe-triazolylidene mesoionic carbene complexes. The excited-state properties of the complexes were investigated by time-resolved femtosecond transient absorption spectroscopy and quantum chemical calculations. Pump wavelength-dependent transient absorption reveals the presence of distinct excited-state relaxation pathways. We relate the excitation-wavelength-dependent branching of the excited-state dynamics into various reaction channels to solvent-dependent photodissociation following the population of dissociative metal centered states upon excitation at 400 nm.

8.
Chemistry ; 26(36): 8045-8052, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32237163

RESUMO

Covalently linked photosensitizer-polyoxometalate (PS-POM) dyads are promising molecular systems for light-induced energy conversion processes, such as "solar" hydrogen generation. To date, very little is known of their fundamental photophysical properties which affect the catalytic reactivity and stability of the systems. PS-POM dyads often feature short-lived photoinduced charge-separated states, and the lifetimes of these states are considered crucial for the function of PS-POM dyads in molecular photocatalysis. Hence, strategies have been developed to extend the lifetimes of the photoinduced charge-separated states, either by tuning the PS photophysics or by tuning the POM redox properties. Recently, some of us reported PS-POM dyads based on cyclometalated IrIII complexes covalently linked to Anderson-type polyoxometalate. Distinct hydrogen evolution reactivity (HER) of the dyads was observed, which was tuned by varying the central metal ion M of the POMM (M=Mn3+ , Co3+ , Fe3+ ). In this manuscript, the photoinduced electron-transfer processes in the three Ir-POMM dyads are investigated to rationalize the underlying reasons for the differences in HER activity observed. We report that upon excitation of the IrIII complex, ultrafast (sub-ps) charge separation occurs, leading to different amounts of the charge-separated states (Ir.+ -POMM .- ) generated in the different dyads. However, in all dyads studied, the resulting Ir.+ -POMM .- species are short-lived (sub-ns) when compared to reference electron acceptors (e.g. porphyrins or fullerenes) reported in the literature. The reductive quenching of Ir.+ -POMM .- by a sacrificial donor, triethyl amine (1 m), to generate the intermediate Ir-POMM .- is estimated to be very efficient (70-80 %) for all dyads studied. Based on this analyses, we conclude that the yield instead of the lifetime of the Ir.+ -POMM .- charge-separated state determines the catalytic capacity of the dyads investigated. This new feature in the PS-POM photophysics could lead to new design criteria for the development of novel PS-POM dyads.

9.
Phys Chem Chem Phys ; 22(7): 4072-4079, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32031195

RESUMO

Fluorescence upconversion by triplet-triplet annihilation is demonstrated for a fully polymer-integrated material, i.e. in the limit of restricted diffusion. Organic sensitizer and acceptor are covalently attached to a poly(methacrylate) backbone, yielding a metal-free macromolecular all-in-one system for fluorescence upconversion. Due to the spatial confinement of the optically active molecular components, i.e. annihilator and sensitizer, UC by TTA in the constrained polymer system in solution is achieved at exceptionally low averaged annihilator concentrations. However, the UC quantum yield in the investigated systems is found to be low, highlighting that only chromophores in specific local surroundings yield upconversion in the limit of restricted diffusion. A photophysical model is proposed taking the heterogeneous local environment within the polymers into account.

10.
J Chem Phys ; 153(18): 184704, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187448

RESUMO

The development of p-type dye-sensitized solar cells (p-DSSCs) offers an opportunity to assemble tandem photoelectrochemical solar cells with higher efficiencies than TiO2-based photoanodes, pioneered by O'Regan and Grätzel [Nature 353, 737-740 (1991)]. This paper describes an investigation into the behavior at the interfaces in p-DSSCs, using a series of BODIPY dyes, BOD1-3. The three dyes have different structural and electronic properties, which lead to different performances in p-DSSCs. We have applied photoelectron spectroscopy and transient absorption spectroscopy to rationalize these differences. The results show that the electronic orbitals of the dyes are appropriately aligned with the valence band of the NiO semiconductor to promote light-induced charge transfer, but charge-recombination is too fast for efficient dye regeneration by the electrolyte. We attribute this fast recombination, which limits the efficiency of the solar cells, to the electronic structure of the dye and the presence of Ni3+ recombination sites at the NiO surface.

11.
Nano Lett ; 18(1): 357-364, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29236508

RESUMO

Hybrid semiconductor-metallic nanostructures play an important role in a wide range of applications and are key components in photocatalysis. Here we reveal that the nature of a nanojunction formed between a semiconductor nanorod and metal nanoparticle is sensitive to the size of the metal component. This is reflected in the activity toward hydrogen production, emission quantum yields, and the efficiency of charge separation which is determined by transient absorption spectroscopy. A set of Ni decorated CdSe@CdS nanorods with different tip size were examined, and an optimal metal domain size of 5.2 nm was obtained. Remarkably, charge separation time constants were found to be nonvariant with metal tip size. It is proposed that electron transfer mechanism encompasses two consecutive but separate processes: slow charge migration along the rod toward the interface, followed by fast interface crossing of the electron from the semiconductor into the metal phase. The first migration step dominates the time constant for the charge separation process and is not affected by the metal size. The efficiency of charge separation on the other hand was found to be sensitive to metal size. It is suggested that Coulomb blockade charging energy and a size-dependent Schottky barrier contribute to the metal size effect on charge transfer probability across the semiconductor-metal nanojunction. These two opposing trends result in an optimal metal size domain for the cocatalyst. This work is expected to benefit a broad range of applications utilizing semiconductor-metal nanocomposites.

12.
Angew Chem Int Ed Engl ; 58(37): 13140-13148, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31347251

RESUMO

Understanding photodriven multielectron reaction pathways requires the identification and spectroscopic characterization of intermediates and their excited-state dynamics, which is very challenging due to their short lifetimes. To the best of our knowledge, this manuscript reports for the first time on in situ spectroelectrochemistry as an alternative approach to study the excited-state properties of reactive intermediates of photocatalytic cycles. UV/Vis, resonance-Raman, and transient-absorption spectroscopy have been employed to characterize the catalytically competent intermediate [(tbbpy)2 RuII (tpphz)RhI Cp*] of [(tbbpy)2 Ru(tpphz)Rh(Cp*)Cl]Cl(PF6 )2 (Ru(tpphz)RhCp*), a photocatalyst for the hydrogenation of nicotinamide (NAD-analogue) and proton reduction, generated by electrochemical and chemical reduction. Electronic transitions shifting electron density from the activated catalytic center to the bridging tpphz ligand significantly reduce the catalytic activity upon visible-light irradiation.

13.
Phys Chem Chem Phys ; 20(17): 11740-11748, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29651486

RESUMO

Polyoxometalate (POM)-associated charge-separated states, formed by the photoinduced oxidation of a covalently attached photosensitizer and reduction of the POM, have attracted much attention due to the remarkable catalytic properties of the reduced POMs. However, short lifetimes of the POM-associated charge-separated state, which in some cases lead to the backward electron transfer being more rapid than the formation of the charge-separated state itself, are generally observed. Recently, we reported on the first example of a relative long-lived (τ = 470 ns) charge-separated state in a Ru(ii) bis(terpyridine)-POM molecular dyad. In this manuscript, further studies on extended molecular structures - two molecular triads - which contain an additional electron donor, phenothiazine (PTZ) or π-extended tetrathiafulvalene (exTTF), are discussed. We show that the excitation of the photosensitizer leads to the population of two distinct MLCT states, which differ in the distribution of excess electron density on the two distinct tpy ligands. These two MLCT states decay separately and, thus, constitute the starting points for distinct intramolecular electron-transfer pathways leading to the simultaneous population of two partially charge-separated states, i.e. PTZ˙+-Ru(tpy)2˙--POM and PTZ-RuIII(tpy)2-POM˙-. These independent decay pathways are unaffected by the choice of the electron donor. Thus, the initial charge distribution within the coordination environment of the photocenter determines the nature of the subsequent (partially) charge separated state that is formed in the triads. These results might open new avenues to design molecular interfaces, in which the directionality of electron transfer can be tuned by the choice of initial excitation.

14.
Chemistry ; 23(20): 4917-4922, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28198051

RESUMO

The photochemistry of RuII coordination compounds is generally discussed to originate from the lowest lying triplet metal-to-ligand charge-transfer state (3 MLCT). However, when heteroleptic complexes are considered, for example, in the design of molecular triads for efficient photoinduced charge separation, a complex structure of 1 MLCT states, which can be populated in a rather narrow spectral window (typically around 450 nm) is to be considered. In this contribution we show that the localization of MLCT excited states on different ligands can affect the following ps to ns decay pathways to an extent that by tuning the excitation wavelength, intermolecular energy transfer from a RuII -terpyridine unit to a fullerene acceptor can be favored over electron transfer within the molecular triad. These results might have important implications for the design of molecular dyads, triads, pentads and so forth with respect to a specifically targeted response of these complexes to photoexcitation.

15.
Chemphyschem ; 18(20): 2899-2907, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28799732

RESUMO

Multichromophoric arrays are key to light harvesting in natural and artificial photosynthesis. A trinuclear, symmetric RuII -FeII -RuII triad may resemble a light-harvesting model system in which excitation energy from donor units (Ru-terpyridine fragments) is efficiently transferred to the acceptor (the Fe-terpyridine fragment). The photoinduced dynamics after simultaneous excitation of more than a single chromophoric unit (donor/acceptor) at varying excitation fluence is investigated in this contribution. Data suggests that energy transfer is decelerated if the acceptor states (on the FeII unit) are not depopulated fast enough. As a consequence, the lifetime of a high-lying excited state (centered on either of the RuII units) is prolonged. A kinetic model is suggested to account for this effect. Although the proposed model is specifically adopted to account for the experimental data reported here, it might be generalized to other situations in which multiple energy or electron donors are covalently linked to a single acceptor site, a situation of interest in contemporary artificial photosynthesis.


Assuntos
Transferência de Energia , Compostos Ferrosos/química , Compostos Organometálicos/química , Rutênio/química , Cinética , Substâncias Macromoleculares/química , Estrutura Molecular , Processos Fotoquímicos
16.
J Phys Chem A ; 121(30): 5635-5644, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28678497

RESUMO

In this study femtosecond and nanosecond time-resolved transient absorption spectroscopy was used to investigate the influence of ionic strength and complexity on the excited state dynamics of a Ru(II)-based metal-organic dyad. The bis-heteroleptic complex [Ru(bpy)2(ippy)]2+ (1), where bpy = 2,2'-bipyridine and ippy = 2-(1-pyrenyl-1H-imidazo[4,5-f][1,10]phenanthroline, is a potent photosensitizer for in vitro photodynamic therapy (PDT) and photodynamic inactivation (PDI) of microorganisms owing to a long-lived triplet excited state derived from a metal-to-ligand charge-transfer (3MLCT) state that is equilibrium with an intraligand (3IL) state. The prolonged lifetime provides ample opportunity for bimolecular quenching of this state by oxygen; thus singlet oxygen (1O2) sensitization is very efficient. In simple aqueous solution, fast cooling within the 3MLCT manifold is followed by energy transfer to an 3IL state, which is facilitated by rotation of a pyrenyl unit about the imidazo-pyrenyl (ip) coannular bond. For solutions of 1 in high ionic strength simulated biological fluid (SBF), a more physiologically relevant solvent that contains a complex mixture of ions at pH 7.4, femtosecond studies revealed an additional excited state, possibly based on an ion-ligand interaction. This new state appearing in high ionic strength SBF was not observable in water, simple buffers, or low ionic strength SBF. These photoinduced dynamics were also affected by the presence of biomolecules such as DNA in simple buffer, whereby relaxation on the picosecond time scale was accelerated from 39 to 18 ps with DNA intercalation by 1. The increased rate of coplanarization of the pyrene and the imidazole units was attributed to DNA-induced conformational restriction of the pyrenyl unit relative to the ip bond. Quantitative changes to excited state decay rates of 1 in solutions of high ionic strength were also observed when probed on the microsecond time scale. Notably, the thermalized excited state decay pathways were altered substantially with DNA intercalation, with access to some states being completely blocked. Experimentally, this manifested in the absence of the slowest microsecond decay channel, which is normally observed for 1 in solution. The quantitative and qualitative observations from this study highlight the importance of employing biologically relevant solvents and potential biomolecule targets when the excited state dynamics and photophysical properties (under cell-free conditions) responsible for the potent photobiological effects are assessed in the context of photodynamic therapy and photodynamic inactivation.


Assuntos
DNA/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Teoria Quântica , Rutênio/química , Fotoquimioterapia , Oxigênio Singlete/química
17.
Chemistry ; 22(24): 8240-53, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27135804

RESUMO

Detailed investigations of a photocatalytic system capable of producing hydrogen under pre-catalytic aerobic conditions are reported. This system consists of the NHC precursor chromophore [Ru(tbbpy)2 (RR'ip)][PF6 ]3 (abbreviated as Ru(RR'ip)[PF6 ]3 ; tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, RR'ip=1,3-disubstituted-1H-imidazo[4,5-f][1,10]phenanthrolinium), the reduction catalyst Co(dmgH)2 (dmgH=dimethylglyoximato), and the electron donor ascorbic acid (AA). Screening studies with respect to solvent, cobaloxime catalyst, electron donor, pH, and concentrations of the individual components yielded optimized photocatalytic conditions. The system shows high activity based on Ru, with turnover numbers up to 2000 under oxygen-free and pre-catalytic aerobic conditions. The turnover frequency in the latter case was even higher than that for the oxygen-free catalyst system. The Ru complexes show high photostability and their first excited state is primarily located on the RR'ip ligand. X-ray crystallographic analysis of the rigid cyclophane-type ligand dd(ip)2 (Br)2 (dd(ip)2 =1,1',3,3'-bis(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(1H-imidazo[4,5-f][1,10]phenanthrolinium)) and the catalytic activity of its Ru complex [{(tbbpy)2 Ru}2 (µ-dd(ip)2 )][PF6 ]6 (abbreviated as Ru2 (dd(ip)2 )[PF6 ]6 ) suggest an intermolecular catalytic cycle.

18.
Chemphyschem ; 17(21): 3480-3493, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27526952

RESUMO

The electrochemical reduction of a series of nickel porphyrins with an increasing number of substituents was investigated in acetonitrile. A one-electron reduction of [5,15-bis(1-ethylpropyl)porphyrinato]nickel(II) leads to π-anion radicals and to efficient formation of phlorin anions, presumably by disproportionation and subsequent protonation of the doubly reduced species. The phlorin anion was identified by using cyclic voltammetry and UV/Vis and resonance Raman spectroelectrochemistry, complemented by quantum-chemical calculations to assign the spectral signatures. The theoretical analysis of the potential-energy landscape of the singly reduced species suggests a thermally activated intersystem crossing that populates the quartet state and thus lowers the energy barrier towards disproportionation channels. Structure-reactivity correlations are investigated by considering different substitution patterns of the investigated nickel(II) porphyrin cores, that is, for the porphyrin with additional ß-aryl ([5,15-bis(1-ethylpropyl)-2,8,12,18-tetra(p-tolyl)porphyrinato]nickel(II)) and meso-alkyl substitution ([5,10,15,20-tetrakis(1-ethylpropyl)porphyrinato]nickel(II)), no phlorin anion formation was observed under electrochemical conditions. This observation is correlated either to kinetic inhibition of the disproportionation reaction or to lower reactivity of the subsequently formed doubly reduced species towards protonation.

19.
Inorg Chem ; 55(11): 5152-67, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27214264

RESUMO

We report a series of cyanide-bridged, heterodinuclear iridium(III)-ruthenium(II) complexes with the generalized formula [Ir((R2)2-ppy)2(CN)(µ-CN)Ru(bpy)(tpy-R1)]PF6 (ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine, and tpy = 2,2':6',2″-terpyridine). The structural, spectroscopic, and electrochemical properties were analyzed in the context of variation of the electron-withdrawing (e.g., -F, -Br, -CHO) and -donating (e.g., -Me) and extended π-conjugated groups at several positions. In total, ten dinuclear complexes and the appropriate model complexes have been prepared. The iridium(III)-based emission is almost fully quenched in these complexes, and only the ruthenium(II)-based emission is observed, which indicates an efficient energy transfer toward the Ru center. Upon oxidation of the Ru center, the fluorinated complexes 2 exhibit a broad intervalence charge-transfer transition in the near-infrared region. The complexes are assigned to a weakly coupled class II system according to the Robin-Day classification. The electronic structure was evaluated by density functional theory (DFT) and time-dependent DFT calculations to corroborate the experimental data.

20.
Phys Chem Chem Phys ; 18(4): 2350-60, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26387529

RESUMO

Multimetallic complexes with extended and highly conjugated bis-2,2':6',2''-terpyridyl bridging ligands, which present building blocks for coordination polymers, are investigated with respect to their ability to act as light-harvesting antennae. The investigated species combine Ru(II)- with Os(II)- and Fe(II)-terpyridyl chromophores, the latter acting as energy sinks. Due to the extended conjugated system the ligands are able to prolong the lifetime of the (3)MLCT states compared to unsubstituted terpyridyl species by delocalization and energetic stabilization of the (3)MLCT states. This concept is applied for the first time to Fe(II) terpyridyl species and results in an exceptionally long lifetime of 23 ps for the Fe(II) (3)MLCT state. While partial energy (>80%) transfer is observed between the Ru(II) and Fe(II) centers with a time-constant of 15 ps, excitation energy is transferred completely from the Ru(II) to the Os(II) center within the first 200 fs after excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA