Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Angew Chem Int Ed Engl ; 63(16): e202316720, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38088219

RESUMO

We report the preparation of a new organic σ-donor with a C6H4-linker between an N-heterocyclic carbene (NHC) and an exocyclic methylidene group, which we term N-heterocyclic quinodimethane (NHQ). The aromatization of the C6H4-linker provides a decisive driving force for the reaction of the NHQ with an electrophile and renders the NHQ significantly more basic than analogous NHCs or N-heterocyclic olefins (NHOs), as shown by DFT computations and competition experiments. In solution, the NHQ undergoes an unprecedented dehydrogenative head-to-head dimerization by C-C coupling of the methylidene groups. DFT computations indicate that this reaction proceeds via an open-shell singlet pathway revealing the diradical character of the NHQ. The product of this dimerization can be described as conjugated N-heterocyclic bis-quinodimethane, which according to cyclic voltammetry is a strong organic reducing agent (E1/2=-1.71 V vs. Fc/Fc+) and exhibits a remarkable small singlet-triplet gap of ΔES→T=4.4 kcal mol-1.

2.
Inorg Chem ; 61(30): 11581-11591, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35861586

RESUMO

Transition metal halide complexes are used as precursors for reductive N2 activation up to full splitting into nitride complexes. Distinct halide effects on the redox properties and yields are frequently observed yet not well understood. Here, an electrochemical and computational examination of reductive N2 splitting with the rhenium(III) complexes [ReX2(PNP)] (PNP = N(CH2CH2PtBu2)2 and X = Cl, Br, I) is presented. As previously reported for the chloride precursor ( J. Am. Chem. Soc.2018, 140, 7922), the heavier halides give rhenium(V) nitrides upon (electro-)chemical reduction in good yields yet with significantly anodically shifted electrolysis potentials along the halide series. Dinuclear, end-on N2-bridged complexes, [{ReX(PNP)}2(µ-N2)], were identified as key intermediates in all cases. However, while the chloride complex is exclusively formed via 2-electron reduction and ReIII/ReI comproportionation, the iodide system also reacts via an alternative ReII/ReII-dimerization mechanism at less negative potentials. This alternative pathway relies on the absence of the potential inversion after reduction and N2 activation that was observed for the chloride precursor. Computational analysis of the relevant ReIII/II and ReII/I redox couples by energy decomposition analysis attributes the halide-induced trends of the potentials to the dominating electrostatic Re-X bonding interactions over contributions from charge transfer.

3.
Angew Chem Int Ed Engl ; 61(35): e202205922, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35714100

RESUMO

Nitride complexes are key species in homogeneous nitrogen fixation to NH3 via stepwise proton-coupled electron transfer (PCET). In contrast, direct generation of nitrogenous organic products from N2 -derived nitrides requires new strategies to enable efficient reductive nitride transfer in the presence of organic electrophiles. We here present a 2-step protocol for the conversion of dinitrogen to benzonitrile. Photoelectrochemical, reductive N2 splitting produces a rhenium(V) nitride with unfavorable PCET thermochemistry towards ammonia generation. However, N-benzoylation stabilizes subsequent reduction as a basis for selective nitrogen transfer in the presence of the organic electrophile and Brønsted acid at mild reduction potentials. This work offers a new strategy for photoelectrosynthetic nitrogen fixation beyond ammonia-to yield nitrogenous organic products.


Assuntos
Amônia , Prótons , Amônia/química , Elétrons , Nitrilas , Nitrogênio/química , Oxirredução
4.
Chemistry ; 27(68): 16978-16989, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34156122

RESUMO

Outer-sphere radical hydrogenation of olefins proceeds via stepwise hydrogen atom transfer (HAT) from transition metal hydride species to the substrate. Typical catalysts exhibit M-H bonds that are either too weak to efficiently activate H2 or too strong to reduce unactivated olefins. This contribution evaluates an alternative approach, that starts from a square-planar cobalt(II) hydride complex. Photoactivation results in Co-H bond homolysis. The three-coordinate cobalt(I) photoproduct binds H2 to give a dihydrogen complex, which is a strong hydrogen atom donor, enabling the stepwise hydrogenation of both styrenes and unactivated aliphatic olefins with H2 via HAT.

5.
Inorg Chem ; 59(19): 14367-14375, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32960050

RESUMO

The splitting of dinitrogen into nitride complexes emerged as a key reaction for nitrogen fixation strategies at ambient conditions. However, the impact of auxiliary ligands or accessible spin states on the thermodynamics and kinetics of N-N cleavage is yet to be examined in detail. We recently reported N-N bond splitting of a {Mo(µ2:η1:η1-N2)Mo}-complex upon protonation of the diphosphinoamide auxiliary ligands. The reactivity was associated with a low-spin to high-spin transition that was induced by the protonation reaction in the coordination periphery, mainly based on computational results. Here, this proposal is evaluated by an XAS study of a series of linearly N2 bridged Mo pincer complexes. Structural characterization of the transient protonation product by EXAFS spectroscopy confirms the proposed spin transition prior to N-N bond cleavage.

6.
Eur J Inorg Chem ; 2020(15-16): 1402-1410, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32421038

RESUMO

The splitting of N2 into well-defined terminal nitride complexes is a key reaction for nitrogen fixation at ambient conditions. In continuation of our previous work on rhenium pincer mediated N2 splitting, nitrogen activation and cleavage upon (electro)chemical reduction of [ReCl2(L2)] {L2 = N(CHCHPtBu2)2 -} is reported. The electrochemical characterization of [ReCl2(L2)] and comparison with our previously reported platform [ReCl2(L1)] {L1 = N(CH2CH2PtBu2)2 -} provides mechanistic insight to rationalize the dependence of nitride yield on the reductant. Furthermore, the reactivity of N2 derived nitride complex [Re(N)Cl(L2)] with electrophiles is presented.

7.
Inorg Chem ; 58(16): 10444-10453, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31268703

RESUMO

Herein, we describe the redox chemistry of bi- and mononuclear α-diimine-Mn(CO)3 complexes with an internal proton source in close proximity to the metal centers and their catalytic activity in the electrochemically driven CO2 reduction reactions. In order to address the impact of the two metal sites and of the proton source, we investigate a binuclear complex with phenol moiety, 1, a binuclear Mn complex with methoxyphenol unit instead, 2, and the mononuclear analogue with a phenol unit, 3. Spectroelectrochemical investigation of the complexes in dmf under a nitrogen atmosphere indicates that 1 and 3 undergo a reductive H2 formation forming [Mn2(H-1L1)(CO)6Br] and [Mn(H-1L3)(CO)3], respectively, which is redox neutral for the complex and equivalent to a deprotonation of the phenol unit. The reaction likely proceeds via internal proton transfer from the phenol moiety to the reduced metal center forming a Mn-H species. 2 dimerizes during reduction, forming [Mn2(L2)(CO)6]2, but 1 and 3 do not. Reduction of 1, 2, and 3 is accompanied by bromide loss, and the final species represent [Mn2(H-1L1)(CO)6]3-, [Mn2(L2)(CO)6]2-, and [Mn(H-1L3)(CO)3]2-, respectively. 1 and 2 are active catalysts in the electrochemical CO2 reduction reaction, whereas 3 decomposes quickly under an applied potential. Thus, the second redox active unit is crucial for enhanced stability. The proton relay in 1 alters the kinetics for the 2H+/2e- reduced products of CO2 in dmf/water mixtures. For 2, CO is the only product, whereas formate and CO are formed in similar amounts, 40% and 50%, respectively, in the presence of 1. Thus, the reaction rate for the internal proton transfer from the phenol moiety to the metal center forming the putative Mn-H species and subsequent CO2 insertion as well as the reaction rate of the reduced metal center with CO2 forming CO are similar. The overpotential with regard to the standard redox potential of CO2 to CO and the observed overall rate constant for catalysis at scan rates of 0.1 V s-1 are higher with 1 than with 2, that is, the OH group is beneficial for catalysis due to the internal proton transfer.

8.
Angew Chem Int Ed Engl ; 58(19): 6338-6341, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840783

RESUMO

The isolable complex [Os(PHMes*)H(PNP)] (Mes*=2,4,6-t Bu3 C6 H3 ; PNP=N{CHCHPt Bu2 }2 ) exhibits high phosphinyl radical character. This compound offers access to the phosphinidene complex [Os(PMes*)H(PNP)] by P-H proton coupled electron transfer (PCET). The P-H bond dissociation energy (BDE) was determined by isothermal titration calorimetry and supporting DFT computations. The phosphinidene product exhibits electrophilic reactivity as demonstrated by intramolecular C-H activation.

9.
Angew Chem Int Ed Engl ; 58(3): 830-834, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30452107

RESUMO

Thermal nitrogen fixation relies on strong reductants to overcome the extraordinarily large N-N bond energy. Photochemical strategies that drive N2 fixation are scarcely developed. Here, the synthesis of a dinuclear N2 -bridged complex is presented upon reduction of a rhenium(III) pincer platform. Photochemical splitting into terminal nitride complexes is triggered by visible light. Clean nitrogen transfer with benzoyl chloride to free benzamide and benzonitrile is enabled by cooperative 2 H+ /2 e- transfer of the pincer ligand. A three-step cycle is demonstrated for N2 to nitrile fixation that relies on electrochemical reduction, photochemical N2 -splitting and thermal nitrogen transfer.

10.
Angew Chem Int Ed Engl ; 58(32): 10971-10974, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31155825

RESUMO

A terminal iridium oxo complex with an open-shell (S=1) ground state was isolated upon hydrogen atom transfer (HAT) from the respective iridium(II) hydroxide. Electronic structure examinations support large spin delocalization to the oxygen atom. Selected oxo transfer reactions indicate the ambiphilic reactivity of the iridium oxo moiety. Calorimetric and computational examinations of the HAT revealed a bond dissociation free energy for the IrO-H bond that is sufficient for hydrogen atom abstraction towards C-H bonds and small contributions from entropy and spin-orbit coupling to the HAT thermochemistry.

11.
Angew Chem Int Ed Engl ; 58(32): 10966-10970, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31179626

RESUMO

The isolation of rhenium(V) complexes with terminal phosphide and arsenide ligands was achieved upon decarbonylation of rhenium(III) pnictaethynolates. One-electron oxidation of the pnictide complexes yielded Pn-Pn (Pn=P, As) coupling products, which were spectroscopically and crystallographically characterized. Computational bond analysis suggests that these complexes are best described as {Pn2 }0 complexes that are stabilized by donor-acceptor interactions with the metal and a pyrazole ligand.

12.
J Am Chem Soc ; 140(25): 7922-7935, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29856611

RESUMO

A comprehensive mechanistic study of N2 activation and splitting into terminal nitride ligands upon reduction of the rhenium dichloride complex [ReCl2(PNP)] is presented (PNP- = N(CH2CH2P tBu2)2-). Low-temperature studies using chemical reductants enabled full characterization of the N2-bridged intermediate [{(PNP)ClRe}2(N2)] and kinetic analysis of the N-N bond scission process. Controlled potential electrolysis at room temperature also resulted in formation of the nitride product [Re(N)Cl(PNP)]. This first example of molecular electrochemical N2 splitting into nitride complexes enabled the use of cyclic voltammetry (CV) methods to establish the mechanism of reductive N2 activation to form the N2-bridged intermediate. CV data was acquired under Ar and N2, and with varying chloride concentration, rhenium concentration, and N2 pressure. A series of kinetic models was vetted against the CV data using digital simulations, leading to the assignment of an ECCEC mechanism (where "E" is an electrochemical step and "C" is a chemical step) for N2 activation that proceeds via initial reduction to ReII, N2 binding, chloride dissociation, and further reduction to ReI before formation of the N2-bridged, dinuclear intermediate by comproportionation with the ReIII precursor. Experimental kinetic data for all individual steps could be obtained. The mechanism is supported by density functional theory computations, which provide further insight into the electronic structure requirements for N2 splitting in the tetragonal frameworks enforced by rigid pincer ligands.

13.
Inorg Chem ; 57(21): 13822-13828, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351067

RESUMO

Hydrogenolysis of the chlorosilanes and silyl triflates (triflate = trifluoromethanesulfonate, OTf-) Me3- nSiX1+ n (X = Cl, OTf; n = 0, 1) to hydrosilanes at mild conditions (4 bar of H2, room temperature) is reported using low loadings (1 mol %) of the bifunctional catalyst [Ru(H)2CO( HPNP iPr)] ( HPNP iPr = HN(CH2CH2P( iPr)2)2). Endergonic chlorosilane hydrogenolysis can be driven by chloride removal, e.g., with NaBArF4 [BArF4- = B(C6H3-3,5-(CF3)2)4-]. Alternatively, conversion to silyl triflates enables facile hydrogenolysis with NEt3 as the base, giving Me3SiH, Me2SiH2, and Me2SiHOTf, respectively, in high yields. An outer-sphere mechanism for silyl triflate hydrogenolysis is supported by density functional theory computations. These protocols provide key steps for synthesis of the valuable hydrochlorosilane Me2SiClH, which can also be directly obtained in yields of over 50% by hydrogenolysis of chlorosilane/silyl triflate mixtures.

14.
Angew Chem Int Ed Engl ; 57(44): 14482-14487, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29771467

RESUMO

The endothermic reverse water-gas shift reaction (rWGS) for direct CO2 hydrogenation to CO is an attractive approach to carbon utilization. However, direct CO2 hydrogenation with molecular catalysts generally gives formic acid instead of CO as a result of the selectivity of CO2 insertion into M-H bonds. Based on the photochemical inversion of this selectivity, several synthetic pathways are presented for CO selective CO2 reduction with a nickel pincer platform including the first example of a photodriven rWGS cycle at ambient conditions.

15.
Angew Chem Int Ed Engl ; 56(21): 5872-5876, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28436068

RESUMO

The coupling of electron- and proton-transfer steps provides a general concept to control the driving force of redox reactions. N2 splitting of a molybdenum dinitrogen complex into nitrides coupled to a reaction with Brønsted acid is reported. Remarkably, our spectroscopic, kinetic, and computational mechanistic analysis attributes N-N bond cleavage to protonation in the periphery of an amide pincer ligands rather than the {Mo-N2 -Mo} core. The strong effect on electronic structure and ultimately the thermochemistry and kinetic barrier of N-N bond cleavage is an unusual case of a proton-coupled metal-to-ligand charge transfer process, highlighting the use of proton-responsive ligands for nitrogen fixation.

16.
Inorg Chem ; 55(9): 4529-36, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27075821

RESUMO

A series of square-planar cobalt(II) complexes with pincer ligands {N(CH2CH2PtBu2)2}(-) ({L1(tBu)}(-)), {N(CH2CH2PtBu2)(CHCHPtBu2)}(-) ({L2(tBu)}(-)), and {N(CHCHPtBu2)2}(-) ({L3(tBu)}(-)) was synthesized. Ligand dehydrogenation was accomplished with a new, high-yield protocol that employs the 2,4,6-tri-tert-butylphenoxy radical as hydrogen acceptor. [CoCl{Ln(tBu)}] (n = 1-3) were examined with respect to reduction, protonation, and oxidation, respectively. One-electron oxidations of [CoCl(L1(tBu))] and [CoCl(L2(tBu))] lead to ligand-centered radical reactivity, like amide disproportionation into cobalt(II) amine and imine complexes. In contrast, oxidation of [CoCl{L3(tBu)}] with Ag(+) enabled the isolation of thermally stable, square-planar cobalt(III) complex [CoCl{L3(tBu)}](+), which adopts an intermediate-spin (S = 1) ground state with large magnetic anisotropy. Hence, pincer dehydrogenation gives access to a new platform for high-valent cobalt in square-planar geometry.

17.
Angew Chem Int Ed Engl ; 55(15): 4786-9, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26948973

RESUMO

About 20% of the ammonia production is used as the chemical feedstock for nitrogen-containing chemicals. However, while synthetic nitrogen fixation at ambient conditions has had some groundbreaking contributions in recent years, progress for the direct conversion of N2 into organic products remains limited and catalytic reactions are unknown. Herein, the rhenium-mediated synthesis of acetonitrile using dinitrogen and ethyl triflate is presented. A synthetic cycle in three reaction steps with high individual isolated yields and recovery of the rhenium pincer starting complex is shown. The cycle comprises alkylation of a nitride that arises from N2 splitting and subsequent imido ligand centered oxidation to nitrile via a 1-azavinylidene (ketimido) intermediate. Different synthetic strategies for intra- and intermolecular imido ligand oxidation and associated metal reduction were evaluated that rely on simple proton, electron, and hydrogen-atom transfer steps.

18.
Angew Chem Int Ed Engl ; 55(38): 11417-20, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27529412

RESUMO

Low-valent osmium nitrides are discussed as intermediates in nitrogen fixation schemes. However, rational synthetic routes that lead to isolable examples are currently unknown. Here, the synthesis of the square-planar osmium(IV) nitride [OsN(PNP)] (PNP=N(CH2 CH2 P(tBu)2 )2 ) is reported upon reversible deprotonation of osmium(VI) hydride [Os(N)H(PNP)](+) . The Os(IV) complex shows ambiphilic nitride reactivity with SiMe3 Br and PMe3 , respectively. Importantly, the hydrogenolysis with H2 gives ammonia and the polyhydride complex [OsH4 (HPNP)] in 80 % yield. Hence, our results directly demonstrate the role of low-valent osmium nitrides and of heterolytic H2 activation for ammonia synthesis with H2 under basic conditions.

19.
Angew Chem Int Ed Engl ; 55(5): 1782-6, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26696311

RESUMO

An experimental and theoretical study of the base-stabilized disilene 1 is reported, which forms at low temperatures in the disproportionation reaction of Si2 Cl6 or neo-Si5 Cl12 with equimolar amounts of NMe2 Et. Single-crystal X-ray diffraction and quantum-chemical bonding analysis disclose an unprecedented structure in silicon chemistry featuring a dative Si→Si single bond between two silylene moieties, Me2 EtN→SiCl2 →Si(SiCl3 )2 . The central ambiphilic SiCl2 group is linked by dative bonds to the amine donor and the bis(trichlorosilyl)silylene acceptor, which leads to push-pull stabilization. Based on experimental and theoretical examinations a formation mechanism is presented that involves an autocatalytic reaction of the intermediately formed anion Si(SiCl3 )3 (-) with neo-Si5 Cl12 to yield 1.

20.
Inorg Chem ; 54(19): 9290-302, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26192601

RESUMO

The redox series [Ir(n)(NHx)(PNP)] (n = II-IV, x = 3-0; PNP = N(CHCHPtBu2)2) was examined with respect to electron, proton, and hydrogen atom transfer steps. The experimental and computational results suggest that the Ir(III) imido species [Ir(NH)(PNP)] is not stable but undergoes disproportionation to the respective Ir(II) amido and Ir(IV) nitrido species. N-H bond strengths are estimated upon reaction with hydrogen atom transfer reagents to rationalize this observation and are used to discuss the reactivity of these compounds toward E-H bond activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA