Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Chembiochem ; 24(19): e202300362, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37435783

RESUMO

Pyrazines are ubiquitous in nature - biosynthesized by microorganisms, insects, and plants. Due to their great structural diversity, they own manifold biological functions. Alkyl- and alkoxypyrazines for instance play a key role as semiochemicals, but also as important aroma compounds in foods. Especially 3-alkyl-2-methoxypyrazines (MPs) have been of great research interest. MPs are associated with green and earthy attributes. They are responsible for the distinctive aroma properties of numerous vegetables. Moreover, they have a strong influence on the aroma of wines, in which they are primarily grape-derived. Over the years various methods have been developed and implemented to analyse the distribution of MPs in plants. In addition, the biosynthetic pathway of MPs has always been of particular interest. Different pathways and precursors have been proposed and controversially discussed in the literature. While the identification of genes encoding O-methyltransferases gave important insights into the last step of MP-biosynthesis, earlier biosynthetic steps and precursors remained unknown. It was not until 2022 that in vivo feeding experiments with stable isotope labeled compounds revealed l-leucine and l-serine as important precursors for IBMP. This discovery gave evidence for a metabolic interface between the MP-biosynthesis and photorespiration.

2.
Chemistry ; 29(16): e202203674, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36548125

RESUMO

3-Isobutyl-2-methoxypyrazine (IBMP) is an extremely potent odorant and responsible for the specific aroma of many fruits and vegetables. Especially bell pepper contains high levels of IBMP, which is the character impact compound of its typical aroma. However, since the discovery of methoxypyrazines in plants in the 1960s the biosynthesis of their pyrazine ring motif remained so far unknown. Therefore, the biosynthetic pathway to IBMP was investigated by feeding experiments with stable-isotope labeled precursors. For the first time it could be shown that l-serine plays a key role in the pyrazine ring construction of 3-alkyl-2-methoxypyrazines (MPs). Based on HS-SPME-GCxGC-TOF-MS analysis, it is shown that the biosynthetic pathway to IBMP is closely linked to photorespiratory derived l-serine.


Assuntos
Capsicum , Capsicum/metabolismo , Frutas/química , Frutas/metabolismo , Pirazinas , Odorantes/análise
3.
Nat Prod Rep ; 39(2): 389-409, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34486004

RESUMO

Covering: up to 2021Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants.


Assuntos
Glicosiltransferases , Terpenos , Glicosilação , Glicosiltransferases/química , Humanos , Plantas/metabolismo , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348829

RESUMO

Plant parasitic nematodes, including the beet cyst nematode Heterodera schachtii, constitute a devastating problem for crops worldwide. The limited availability of sustainable management options illustrates the need for new eco-friendly control means. Plant metabolites represent an invaluable source of active compounds for the discovery of such novel antagonistic agents. Here, we evaluated the impact of eight plant terpenoids on the H. schachtii parasitism of Arabidopsis thaliana. None of the metabolites affected the plant development (5 or 10 ppm). Nootkatone decreased the number of adult nematodes on A. thaliana to 50%, with the female nematodes being smaller compared to the control. In contrast, three other terpenoids increased the parasitism and/or female size. We discovered that nootkatone considerably decreased the number of nematodes that penetrated A. thaliana roots, but neither affected the nematode viability or attraction to plant roots, nor triggered the production of plant reactive oxygen species or changed the plant's sesquiterpene profile. However, we demonstrated that nootkatone led to a significant upregulation of defense-related genes involved in salicylic and jasmonic acid pathways. Our results indicate that nootkatone is a promising candidate to be developed into a novel plant protection agent acting as a stimulator of plant immunity against parasitic nematodes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Raízes de Plantas/imunologia , Sesquiterpenos Policíclicos/farmacologia , Tylenchoidea/crescimento & desenvolvimento , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Feminino , Doenças das Plantas/parasitologia , Extratos Vegetais/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Tylenchoidea/efeitos dos fármacos
5.
Molecules ; 25(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023270

RESUMO

Volatile phenols like phenylpropanoid and benzoid compounds originate from the aromatic amino acid phenylalanine, which is biosynthesized via the shikimate/arogenate pathway. These volatile compounds contribute to the aroma of a number of economically important plant-derived foods like herbs, spices and fruits. The sequestration of numerous phenylpropanoid and benzoid compounds as glycosides occurs widely in fruits, and this pool represents an important source of flavor that can be released during storage and processing. Therefore, this review will provide an overview of the biosynthesis of free and glycosylated phenylpropanoid and benzoid compounds and their reactions during food processing, which both lead to the generation of odor-active volatile phenols in plant-derived foods.


Assuntos
Alimentos , Odorantes/análise , Fenóis/análise , Plantas Comestíveis/química , Compostos Orgânicos Voláteis/análise , Fenóis/química , Relação Estrutura-Atividade
6.
Beilstein J Org Chem ; 15: 1945-1961, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31501661

RESUMO

Sesquiterpenes are structurally diverse, potent flavoring substances that significantly influence the aroma profile of grapes (Vitis vinifera L.) at the time of physiological ripening. To investigate these natural compounds, freshly harvested, ripe berries of the red wine variety Lemberger (Vitis vinifera subsp. vinifera L.) were analyzed using comprehensive two-dimensional gas chromatography (GC×GC) coupled to a time-of-flight mass spectrometer (TOF-MS) after headspace-solid phase microextraction (HS-SPME). The identification of structurally complex natural compounds, such as sesquiterpenes from fruits and vegetables, is often reported as "tentative", as authentic standards are not commercially available for most of the analytes. For this reason, feeding experiments (in vivo labeling) were carried out using the stable isotope-labeled precursors [5,5-2H2]-1-deoxy-ᴅ-xylulose (d 2-DOX) and [6,6,6-2H3]-(±)-mevalonolactone (d 3-MVL) to clearly identify the volatiles. Based on the recorded mass spectra of the unlabeled and deuterated compounds, mechanisms for sesquiterpene formation in V. vinifera could be proposed and already known pathways could be confirmed or disproved. For example, the HS-SPME-GC×GC-TOF-MS measurements of fed sample material showed that the tricyclic sesquiterpene hydrocarbons α-copaene, ß-copaene, α-cubebene, ß-cubebene and the bicyclic δ-cadinene were biosynthesized via (S)-(-)-germacrene D rather than via (R)-(+)-germacrene D as intermediate.

7.
Anal Bioanal Chem ; 408(20): 5601-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27236316

RESUMO

Nonylphenol is in the focus of worldwide endocrine-disrupter research and accounted for as a priority hazardous substance of the Water Framework Directive of the European Union. Technical nonylphenol consists of a very complex mixture of isomers and enantiomers. As estrogenic effect and degradation behavior in environmental processes of single nonylphenols are heavily dependent on the structure of the nonyl side chain, it is absolutely necessary to consider the nonylphenol problem from an isomer and enantiomer-specific viewpoint. In this study, an enantiomer-specific separation of eight defined synthesized nonylphenol isomers by five different special chiral cyclodextrin columns was performed underivatized and after methylation, silylation, and acylation. This work demonstrates that three columns out of the investigated five show an excellent separation behavior for the studied different nonylphenol isomers and can be used for the enantiomer-specific determination of nonylphenols in food, other biological matrices, and environmental samples in the future. Graphical abstract Enantiomeric pair of 4-NP170 (4-[1-ethyl-1,3,3-trimethylbutyl]phenol).


Assuntos
Misturas Complexas/isolamento & purificação , Disruptores Endócrinos/química , Disruptores Endócrinos/isolamento & purificação , Ionização de Chama/métodos , Fenóis/química , Fenóis/isolamento & purificação , Misturas Complexas/química , Isomerismo
8.
Plant Physiol ; 166(1): 23-39, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25073706

RESUMO

Monoterpenols serve various biological functions and accumulate in grape (Vitis vinifera), where a major fraction occurs as nonvolatile glycosides. We have screened the grape genome for sequences with similarity to terpene URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASES (UGTs) from Arabidopsis (Arabidopsis thaliana). A ripening-related expression pattern was shown for three candidates by spatial and temporal expression analyses in five grape cultivars. Transcript accumulation correlated with the production of monoterpenyl ß-d-glucosides in grape exocarp during ripening and was low in vegetative tissue. Targeted functional screening of the recombinant UGTs for their biological substrates was performed by activity-based metabolite profiling (ABMP) employing a physiologic library of aglycones built from glycosides isolated from grape. This approach led to the identification of two UDP-glucose:monoterpenol ß-d-glucosyltransferases. Whereas VvGT14a glucosylated geraniol, R,S-citronellol, and nerol with similar efficiency, the three allelic forms VvGT15a, VvGT15b, and VvGT15c preferred geraniol over nerol. Kinetic resolution of R,S-citronellol and R,S-linalool was shown for VvGT15a and VvGT14a, respectively. ABMP revealed geraniol as the major biological substrate but also disclosed that these UGTs may add to the production of further glycoconjugates in planta. ABMP of aglycone libraries provides a versatile tool to uncover novel biologically relevant substrates of small-molecule glycosyltransferases that often show broad sugar acceptor promiscuity.


Assuntos
Glucosiltransferases/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Vitis/enzimologia , Frutas/metabolismo , Estereoisomerismo
9.
Plant Physiol ; 165(2): 561-581, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24784757

RESUMO

Terpenoids represent one of the major classes of natural products and serve different biological functions. In grape (Vitis vinifera), a large fraction of these compounds is present as nonvolatile terpene glycosides. We have extracted putative glycosyltransferase (GT) sequences from the grape genome database that show similarity to Arabidopsis (Arabidopsis thaliana) GTs whose encoded proteins glucosylate a diversity of terpenes. Spatial and temporal expression levels of the potential VvGT genes were determined in five different grapevine varieties. Heterologous expression and biochemical assays of candidate genes led to the identification of a UDP-glucose:monoterpenol ß-d-glucosyltransferase (VvGT7). The VvGT7 gene was expressed in various tissues in accordance with monoterpenyl glucoside accumulation in grape cultivars. Twelve allelic VvGT7 genes were isolated from five cultivars, and their encoded proteins were biochemically analyzed. They varied in substrate preference and catalytic activity. Three amino acids, which corresponded to none of the determinants previously identified for other plant GTs, were found to be important for enzymatic catalysis. Site-specific mutagenesis along with the analysis of allelic proteins also revealed amino acids that impact catalytic activity and substrate tolerance. These results demonstrate that VvGT7 may contribute to the production of geranyl and neryl glucoside during grape ripening.

10.
Appl Microbiol Biotechnol ; 99(1): 165-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25431013

RESUMO

The detection of glucoconjugated forms of monoterpene alcohols in rose petals in the late 1960s opened the new field of nonvolatile aroma precursors in flavor research. It is now well established that odorless glycosides represent a significant pool of aroma precursors in plants where they act as preformed but inactivated defense or attractive chemicals. Technical improvements in the separation and identification of plant secondary metabolites have provided a multitude of chemical structures, but functional characterization of glycosyltransferases that catalyze their formation lags behind. As technical efforts and costs for DNA sequencing dramatically dropped during the last decade, the number of plant genome sequences increased significantly, thus providing opportunities to functionally characterize the glycosyltransferase gene families in plants. These studies yielded the first glycosyltransferase genes that encode efficient biocatalysts for the production of monoterpene glucosides. They have applications in the food, feed, chemical, cosmetic, and pharmaceutical industries as slow release aroma chemicals.


Assuntos
Cosméticos/metabolismo , Aromatizantes/metabolismo , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Monoterpenos/metabolismo , Biotecnologia/métodos , Biotecnologia/tendências , Redes e Vias Metabólicas , Plantas/metabolismo , Metabolismo Secundário
11.
J Chromatogr A ; 1728: 464997, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38821031

RESUMO

The method development process in gas chromatography can be accelerated by suitable computer simulation tools using knowledge about the solute-column interactions described by thermodynamic retention parameters. Since retention parameters usually are determined under isothermal conditions, the presented work offers a step to estimate one of the most important retention parameters, the characteristic temperature Tchar by less laborious temperature programmed measurements. In the first part an empirical multivariate model was introduced describing the correlation between the elution temperature Telu of a solute and its characteristic temperature Tchar. Now in the second part a simulation model of GC and available retention data from a retention database was used to investigate the correlation between Telu and Tchar for an expanded range of heating rates and initial temperatures. In addition to part I, the simulation is used to investigate the influences of different properties of the separation column such as different phase ratios and column geometries like length and diameter or various stationary phases including SLB-5 ms, SPB-50, Stabilwax, Rtx-Dioxin2, Rxi-17Sil MS, Rxi-5Sil MS, ZB-PAH-CT, DB-5 ms, Rxi-5 ms, Rtx5 and FS5ms. The fit model is valid for all investigated stationary phases. The influence of the phase ratio to the correlation could be determined. Therefore, the model was expanded to this parameter. The expanded range of heating rates and the normalization for the system independent dimensionless heating rate required a further modification of the previously presented correlation model. The model now fits also under isothermal conditions. The results were used for estimation of the Tchar of an analyte from the elution temperature in the temperature program. The prediction performance was investigated and evaluated for 20 different temperature program conditions and at two phase ratios (ß=125 and ß=250). Under best conditions the estimated and the measured Tchar values show relative differences <0.5 %. With this novel model estimations for Tchar are possible at 20 °C above the initial temperature, which expands the prediction range even for low and medium retained analytes compared to earlier approaches.


Assuntos
Temperatura , Cromatografia Gasosa/métodos , Simulação por Computador , Termodinâmica , Modelos Químicos
12.
J Chromatogr A ; 1717: 464665, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38281342

RESUMO

For method development in gas chromatography, suitable computer simulations can be very helpful during the optimization process. For such computer simulations retention parameters are needed, that describe the interaction of the analytes with the stationary phase during the separation process. There are different approaches to describe such an interaction, e.g. thermodynamic models like Blumberg's distribution-centric 3-parameter model (K-centric model) or models using chemical properties like the Linear Solvation Energy Relationships (LSER). In this work LSER models for a Rxi-17Sil MS and a Rxi-5Sil MS GC column are developed for different temperatures. The influences of the temperature to the LSER system coefficients are shown in a range between 40 and 200 °C and can be described with Clark and Glew's ABC model as fit function. A thermodynamic interpretation of the system constants is given and its contribution to enthalpy and entropy is calculated. An estimation method for the retention parameters of the K-centric model via LSER models were presented. The predicted retention parameters for a selection of 172 various compounds, such as FAMEs, PCBs and PAHs are compared to isothermal determined values. 40 measurements of temperature programmed GC separations are compared to computer simulations using the differently determined or estimated K-centric retention parameters. The mean difference (RSME) between the measured and predicted retention time is less than 8 s for both stationary phases using the isothermal retention parameters. With the LSER predicted parameters the difference is 20 s for the Rxi-5Sil MS and 38 s for the Rxi-17Sil MS. Therefore, the presented estimation method can be recommended for first method development in gas chromatography.


Assuntos
Cromatografia Gasosa , Cromatografia Gasosa/métodos , Simulação por Computador , Termodinâmica , Temperatura , Entropia
13.
Int J Pharm ; 654: 123946, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417728

RESUMO

Loading poorly soluble active pharmaceutical ingredients (API) into mesoporous silica can enable API stabilization in non-crystalline form, which leads to improved dissolution. This is particularly beneficial for highly lipophilic APIs (log D7.4 > 8) as these drugs often exhibit limited solubility in dispersion forming carrier polymers, resulting in low drug load and reduced solid state stability. To overcome this challenge, we loaded the highly lipophilic natural products coenzyme Q10 (CoQ10) and astaxanthin (ASX), as well as the synthetic APIs probucol (PB) and lumefantrine (LU) into the mesoporous silica carriers Syloid® XDP 3050 and Silsol® 6035. All formulations were physically stable in their non-crystalline form and drug loads of up to 50 % were achieved. At increasing drug loads, a marked increase in equilibrium solubility of the active ingredients in biorelevant medium was detected, leading to improved performance during biorelevant biphasic dissolution studies (BiPHa + ). Particularly the natural products CoQ10 and ASX showed substantial benefits from being loaded into mesoporous carrier particles and clearly outperformed currently available commercial formulations. Performance differences between the model compounds could be explained by in silico calculations of the mixing enthalpy for drug and silica in combination with an experimental chromatographic method to estimate molecular interactions.


Assuntos
Produtos Biológicos , Química Farmacêutica , Solubilidade , Liberação Controlada de Fármacos , Química Farmacêutica/métodos , Dióxido de Silício/química , Portadores de Fármacos/química , Porosidade
14.
J Chromatogr A ; 1730: 465039, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38901296

RESUMO

A system consisting of a thermal desorption unit (TDU) and micro thermal desorption tubes (µTD-tubes, 1.4 mm I.D., 10mg Tenax TA) for fast desorption of analytes was developed for the efficient combination of hyper fast gas chromatography with thermal desorption. The fast desorption is achieved by a significantly reduced thermal mass compared to conventional thermal desorption tubes. Therefore, extremely fast heating and cooling cycles are possible. Proof of concept measurements combining the new setup with a flow-field thermal gradient gas chromatograph (FF-TG-GC) and FID detection show good precision and linearity with R2≥0.995 in the analysis of an n-alkane mix (C8-C20). Thermal desorption occurs within 12s. The impact of reduced µTD-tube dimensions on desorption time, full width at half maximum (FWHM), breakthrough volumes, tube flow rates ergo linear velocities, porosity and back pressure is discussed.

15.
J Agric Food Chem ; 72(26): 14874-14886, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885647

RESUMO

A modified aroma extract dilution approach (AEDA), followed by the determination of flavor dilution (FD) factors, a quantitative analysis and calculation of the relative flavor activity (RFA) and odor activity values (OAVs) as well as recombination experiments were conducted to evaluate the odor- and taste-relevant components of cold-pressed Citrus latifolia peel oil. A 2-fold concentration by distillation and reanalysis, compared with the original oil, revealed relevant components. Partition of the odor-active substances into four reconstitution groups according to their respective FD factors, followed by a recombination, allowed for a better understanding of the contribution of each FD-factor group to the overall aroma. Especially α-pinene, limonene, γ-terpinene, and 7-methoxycoumarin contribute significantly to the distinct aroma profile of C. latifolia. Heptadecanal (CAS 629-90-3) was described for the first time as an odor-active substance in an enriched C. latifolia peel oil. Campherenyl acetate (CAS 18530-07-9) was identified in nature for the first time and described with a herbal, minty and citrus-like odor. The odor profile of the final recombinant mixture, containing 36 components, was similar to cold-pressed C. latifolia peel oil for most descriptors, whereas the taste profile was described as more aldehydic and citral-like.


Assuntos
Citrus , Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Paladar , Citrus/química , Odorantes/análise , Aromatizantes/química , Humanos , Frutas/química , Compostos Orgânicos Voláteis/química , Olfato , Óleos de Plantas/química , Feminino , Limoneno/química , Limoneno/análise , Masculino , Adulto
16.
J Agric Food Chem ; 72(17): 10014-10022, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626782

RESUMO

Citrus fruits have been known and valued for their aroma in food and perfume ever since humans have maintained written records. Often described as the "champagne" of citrus oils, especially cold pressed lime peel oils have raised attention. Particularly peel oils of Citrus latifolia exhibit a pleasant coumarinic, sweet, and balsamic aroma in comparison to its close relative, the Citrus aurantifolia. Those coumarinic notes have not been completely understood until today. Thus, this study aimed to identify the responsible substances and elucidate their contribution and impact on the aroma of cold-pressed lime oil. By combining distillation, fractionation, olfactory detection, and structure elucidation, the responsible key aroma components were identified. A combination of coumarins and their corresponding saturated analogs have been identified to significantly contribute to the typical coumarinic-like aroma, including three new flavor compounds that have not yet been described in the literature as lime oil constituents: 7-methoxy-2-chromanone (3,4-dihydro-7-methoxy-2H-1-benzopyran-2-one; CAS 20921-02-2), 5,7-dimethoxy-2-chromanone (3,4-dihydro-5,7-dimethoxy-2H-1-benzopyran-2-one; CAS 82243-01-4) and 5,6-dihydrobergaptene (5,6-dihydro-4-methoxy-7H-furo[3,2-g][1]benzopyran-7-one; CAS 29050-61-1). The sensorial evaluation of the impact of these components on the lime aroma profile has shown flavor-modulating effects and the ability to enhance aldehydic-peely, juicy, and fruity notes as well as their importance in reproducing the authentic, typical coumarin-like notes.


Assuntos
Compostos de Cálcio , Citrus , Cumarínicos , Aromatizantes , Odorantes , Óxidos , Óleos de Plantas , Paladar , Humanos , Cumarínicos/química , Odorantes/análise , Óleos de Plantas/química , Citrus/química , Aromatizantes/química , Masculino , Feminino , Adulto , Frutas/química , Adulto Jovem , Pessoa de Meia-Idade , Olfato , Cromatografia Gasosa-Espectrometria de Massas
17.
J Chromatogr A ; 1707: 464301, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37607429

RESUMO

The development of new analytical methods can save resources, time and costs if there are prediction tools like computer simulation which support the optimization process. In GC the distribution-centric 3-parameter model (K-centric model) is well established for prediction of retention factors k and retention times but laborious isothermal measurements for determination of the characteristic parameters are needed. For the most important parameter, the characteristic temperature Tchar, the search for simpler determination methods or even estimates is an interesting research topic. In this work the elution temperatures for 37 fatty acid methyl esters, 6 BTEXs and 40 other volatile substances are determined by measurements under variable heating rates, initial temperatures, constant pressure mode and constant flow mode. The relationship between the measured elution temperature and the characteristic temperature was investigated. The novel multivariate curve fit model presented in this study describes accurately the relation between the characteristic temperature Tchar and elution temperatures Telu under variable heating rates RT, respectively, and initial temperature Tinit conditions. The novel model shows good accordance to earlier estimation models and expands the prediction range, especially for high volatile compounds. The model is suitable for determination of Tchar by estimated Telu and vice versa. Predictions of retention times of simple temperature programs were also possible by using the model with relative deviations < 5% compared to measurements.


Assuntos
Ácidos Graxos , Calefação , Simulação por Computador , Temperatura , Cromatografia Gasosa
18.
Phytochemistry ; 205: 113488, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36323357

RESUMO

The distribution and translocation as well as the biosynthetic sites of 3-isobutyl-2-methoxypyrazine (IBMP) in bell pepper plants (Capsicum annuum) were examined. For IBMP-quantification, a stable-isotope dilution assay (SIDA) was developed, using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography and time-of-flight mass spectrometry (ToF-MS). While IBMP was the most abundant MP in all aerial plant parts, IPMP was dominating in root tissues. The highest IBMP-levels were found in unripe bell pepper fruits. Moreover, feeding experiments with [2H10]-l-leucine revealed that IBMP is biosynthesized in all plant parts, while in roots and ripe bell pepper fruit tissues no incorporation of the labelled precursor was detectable. A potential phloem translocation of IBMP could not be detected.


Assuntos
Capsicum
19.
J Chromatogr A ; 1699: 464008, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37104945

RESUMO

A fast and reliable method is presented to evaluate retention parameters of the distribution-centric 3-parameter model from temperature programed gas chromatographic measurements. Based on a fully differentiable model of the migration of solutes in a gas chromatographic (GC) system, Newton's method with a trust region is used to determine the three parameters, respectively the three parameters and the column diameter, of several solutes as the minima of the difference between measured and calculated retention times. The determined retention parameters can then be used in method development, using the simulation of GC separation. The results of the retention parameters are compared to the parameters determined using isothermal GC measurements and show good agreement, with deviations of less than 0.5% (1.8 K) for the most important parameter of characteristic temperature Tchar. Using the estimated retention parameters, additional GC separations are simulated and compared with measurements. Retention times in additional temperature programmed measurements could be predicted with less than 0.7% deviation. Four to five different temperature programs are enough to determine reliable retention parameters. Unless the column diameter and the column length are exactly known, it is preferable to also estimate the diameter (more precisely the L/d-ratio) together with the retention parameters.


Assuntos
Temperatura , Cromatografia Gasosa/métodos , Simulação por Computador
20.
J Agric Food Chem ; 71(42): 15632-15643, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824789

RESUMO

In vitro dissolution methods correctly predicting in vivo bioavailability of compounds from complex mixtures are lacking. We therefore used data on the in vivo performance of bioavailability-improved curcumin formulations to implement an in vivo predictive dissolution method (BiPHa+). BiPHa+ was applied for the characterization of eight curcumin formulations previously studied in a strictly controlled pharmacokinetic human trial. During dissolution, the dissolved proportion of curcumin in the aqueous medium underwent a formulation-dependent reduction, whereas the proportion remained stable in the organic layer. Compared with conventional dissolution systems, BiPHa+ was superior in terms of in vivo-relevant formulation characterization. All formulations could be precisely categorized according to their bioavailability in humans. In vitro-in vivo relationships for each dissolution method were established, with BiPHa+ providing the highest degree of linearity (r2 = 0.9975). The BiPHa+ assay correctly predicted the bioavailability of curcuminoids from complex mixtures and provided mechanistic information about formulation-dependent release characteristics.


Assuntos
Curcumina , Humanos , Disponibilidade Biológica , Curcumina/farmacocinética , Solubilidade , Diarileptanoides , Misturas Complexas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA