Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(12): e22038, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748229

RESUMO

Abdominal trauma (AT) is of major global importance, particularly with the increased potential for civil, terroristic, and military trauma. The injury pattern and systemic consequences of blunt abdominal injuries are highly variable and frequently underestimated or even missed, and the pathomechanisms remain still poorly understood. Therefore, we investigated the temporal-spatial organ and immune response after a standardized blast-induced blunt AT. Anesthetized mice were exposed to a single blast wave centered on the epigastrium. At 2, 6, or 24 h after trauma, abdominal organ damage was assessed macroscopically, microscopically, and biochemically. A higher degree of trauma severity, determined by a reduction of the distance between the epigastrium and blast inductor, was reflected by a reduced survival rate. The hemodynamic monitoring during the first 120 min after AT revealed a decline in the mean arterial pressure within the first 80 min, whereas the heart rate remained quite stable. AT induced a systemic damage and inflammatory response, evidenced by elevated HMGB-1 and IL-6 plasma levels. The macroscopic injury pattern of the abdominal organs (while complex) was consistent, with the following frequency: liver > pancreas > spleen > left kidney > intestine > right kidney > others > lungs and was reflected by microscopic liver and pancreas damages. Plasma levels of organ dysfunction markers increased during the first 6 h after AT and subsequently declined, indicating an early, temporal impairment of the function on a multi-organ level. The established highly reproducible murine blunt AT, with time- and trauma-severity-dependent organ injury patterns, systemic inflammatory response, and impairment of various organ functions, reflects characteristics of human AT. In the future, this model may help to study the complex immuno-pathophysiological consequences and innovative therapeutic approaches after blunt AT.


Assuntos
Traumatismos Abdominais/complicações , Injúria Renal Aguda/patologia , Traumatismos por Explosões/complicações , Fígado/patologia , Traumatismo Múltiplo/complicações , Pâncreas/patologia , Injúria Renal Aguda/etiologia , Animais , Fígado/lesões , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/lesões , Pâncreas/metabolismo
2.
Pharmacol Res ; 151: 104536, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734346

RESUMO

Controversial data are available on hydrogen sulfide (H2S) during hemorrhage and resuscitation, depending on timing, dosing, mode of application, and the H2S donor used. Sodium thiosulfate (Na2S2O3) is a recognized drug devoid of major side effects, which attenuated murine acute lung injury and cerebral ischemia/reperfusion injury. Therefore, we tested the hypothesis whether Na2S2O3 would mitigate organ dysfunction in porcine hemorrhage-and-resuscitation. We studied animals with pre-existing coronary artery disease because of the reduced coronary arterial expression of the H2S producing enzyme cystathionine-γ-lyase (CSE) in this prospective, randomized, controlled, blinded experimental study. 20 anesthetized and instrumented pigs underwent 3 h of hemorrhage (removal of 30 % of the blood volume and subsequent titration of mean arterial pressure to 40 mmHg). Resuscitation (72 h) comprised re-transfusion of shed blood, crystalloids, and continuous i.v. norepinephrine. Animals randomly received vehicle or Na2S2O3 (0.1 g·kg-1 h-1) for 24 h. Before, at the end of and every 24 h after shock, hemodynamics, metabolism, blood gases, lung, heart, kidney, and liver function and injury were evaluated together with cytokines and parameters of oxidative and nitrosative stress. Immediate post mortem lung, kidney, heart, and liver specimen were analyzed for marker proteins of inflammation and oxidative and nitrosative stress and mitochondrial respiratory activity in the heart, kidney, and liver. Immuno-histochemical analysis comprised lung extra-vascular albumin accumulation, nitrotyrosine formation, and CSE and glucocorticoid receptor (GCR) expression. Na2S2O3 significantly attenuated shock-induced impairment of lung mechanics and gas exchange (plateau and positive end-expiratory pressure at 72 h p = 0.0006/p = 0.0264; Horovitz index at 48 h p = 0.0261), which coincided with a higher tissue GCR expression (p = 0.0415). During resuscitation from hemorrhagic shock Na2S2O3 attenuated shock-induced acute lung injury in co-morbid swine, most likely due to a GCR expression related mechanism.


Assuntos
Antioxidantes/uso terapêutico , Aterosclerose/complicações , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Tiossulfatos/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Aterosclerose/patologia , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/patologia , Feminino , Masculino , Distribuição Aleatória , Ressuscitação , Choque Hemorrágico/patologia , Suínos , Tiossulfatos/administração & dosagem
3.
Crit Care Med ; 45(12): e1270-e1279, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29028763

RESUMO

OBJECTIVES: Investigation of the effects of hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease. DESIGN: Prospective, controlled, randomized trial. SETTING: University animal research laboratory. SUBJECTS: Nineteen hypercholesterolemic pigs with preexisting coronary artery disease. INTERVENTIONS: Anesthetized, mechanically ventilated, and surgically instrumented pigs underwent 3 hours of hemorrhagic shock (removal of 30% of the calculated blood volume and subsequent titration of mean arterial blood pressure ≈40 mm Hg). Postshock resuscitation (48 hr) comprised retransfusion of shed blood, crystalloids (balanced electrolyte solution), and norepinephrine support. Pigs were randomly assigned to "control" (FIO2 0.3, adjusted for arterial oxygen saturation ≥ 90%) and "hyperoxia" (FIO2 1.0 for 24 hr) groups. MEASUREMENTS AND MAIN RESULTS: Before, at the end of shock and every 12 hours of resuscitation, datasets comprising hemodynamics, calorimetry, blood gases, cytokines, and cardiac and renal function were recorded. Postmortem, organs were sampled for immunohistochemistry, western blotting, and mitochondrial high-resolution respirometry. Survival rates were 50% and 89% in the control and hyperoxia groups, respectively (p = 0.077). Apart from higher relaxation constant τ at 24 hours, hyperoxia did not affect cardiac function. However, troponin values were lower (2.2 [0.9-6.2] vs 6.9 [4.8-9.8] ng/mL; p < 0.05) at the end of the experiment. Furthermore, hyperoxia decreased cardiac 3-nitrotyrosine formation and increased inducible nitric oxide synthase expression. Plasma creatinine values were lower in the hyperoxia group during resuscitation coinciding with significantly improved renal mitochondrial respiratory capacity and lower 3-nitrotyrosine formation. CONCLUSIONS: Hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease reduced renal dysfunction and cardiac injury, potentially resulting in improved survival, most likely due to increased mitochondrial respiratory capacity and decreased oxidative and nitrosative stress. Compared with our previous study, the present results suggest a higher benefit of hyperoxia in comorbid swine due to an increased susceptibility to hemorrhagic shock.


Assuntos
Doença da Artéria Coronariana/epidemiologia , Hipercolesterolemia/epidemiologia , Hiperóxia/fisiopatologia , Ressuscitação/métodos , Choque Hemorrágico/epidemiologia , Choque Hemorrágico/fisiopatologia , Animais , Gasometria , Pressão Sanguínea , Citocinas/metabolismo , Testes de Função Cardíaca , Hemodinâmica , Testes de Função Renal , Estudos Prospectivos , Distribuição Aleatória , Choque Hemorrágico/mortalidade , Choque Hemorrágico/terapia , Suínos
4.
Crit Care Med ; 44(5): e264-77, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26588829

RESUMO

OBJECTIVE: Hemorrhagic shock-induced tissue hypoxia induces hyperinflammation, ultimately causing multiple organ failure. Hyperoxia and hypothermia can attenuate tissue hypoxia due to increased oxygen supply and decreased demand, respectively. Therefore, we tested the hypothesis whether mild therapeutic hypothermia and hyperoxia would attenuate postshock hyperinflammation and thereby organ dysfunction. DESIGN: Prospective, controlled, randomized study. SETTING: University animal research laboratory. SUBJECTS: Thirty-six Bretoncelles-Meishan-Willebrand pigs of either gender. INTERVENTIONS: After 4 hours of hemorrhagic shock (removal of 30% of the blood volume, subsequent titration of mean arterial pressure at 35 mm Hg), anesthetized and instrumented pigs were randomly assigned to "control" (standard resuscitation: retransfusion of shed blood, fluid resuscitation, norepinephrine titrated to maintain mean arterial pressure at preshock values, mechanical ventilation titrated to maintain arterial oxygen saturation > 90%), "hyperoxia" (standard resuscitation, but FIO2, 1.0), "hypothermia" (standard resuscitation, but core temperature 34°C), or "combi" (hyperoxia plus hypothermia) (n = 9 each). MEASUREMENTS AND MAIN RESULTS: Before, immediately at the end of and 12 and 22 hours after hemorrhagic shock, we measured hemodynamics, blood gases, acid-base status, metabolism, organ function, cytokine production, and coagulation. Postmortem kidney specimen were taken for histological evaluation, immunohistochemistry (nitrotyrosine, cystathionine γ-lyase, activated caspase-3, and extravascular albumin), and immunoblotting (nuclear factor-κB, hypoxia-inducible factor-1α, heme oxygenase-1, inducible nitric oxide synthase, B-cell lymphoma-extra large, and protein expression of the endogenous nuclear factor-κB inhibitor). Although hyperoxia alone attenuated the postshock hyperinflammation and thereby tended to improve visceral organ function, hypothermia and combi treatment had no beneficial effect. CONCLUSIONS: During resuscitation from near-lethal hemorrhagic shock, hyperoxia attenuated hyperinflammation, and thereby showed a favorable trend toward improved organ function. The lacking efficacy of hypothermia was most likely due to more pronounced barrier dysfunction with vascular leakage-induced circulatory failure.


Assuntos
Hiperóxia , Hipotermia Induzida/métodos , Ressuscitação/métodos , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/terapia , Animais , Coagulação Sanguínea/fisiologia , Gasometria , Citocinas/metabolismo , Feminino , Hidratação , Hemodinâmica , Immunoblotting , Imuno-Histoquímica , Rim/patologia , Masculino , Estudos Prospectivos , Distribuição Aleatória , Respiração Artificial , Suínos
5.
Nitric Oxide ; 41: 48-61, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24650697

RESUMO

Numerous papers have been published on the role of H2S during circulatory shock. Consequently, knowledge about vascular sulfide concentrations may assume major importance, in particular in the context of "acute on chronic disease", i.e., during circulatory shock in animals with pre-existing chronic disease. This review addresses the questions (i) of the "real" sulfide levels during circulatory shock, and (ii) to which extent injury and pre-existing co-morbidity may affect the expression of H2S producing enzymes under these conditions. In the literature there is a huge range on sulfide blood levels during circulatory shock, in part as a result of the different analytical methods used, but also due to the variable of the models and species studied. Clearly, some of the very high levels reported should be questioned in the context of the well-known H2S toxicity. As long as "real" sulfide levels during circulatory shock are unknown and/or undetectable "on line" due to the lack of appropriate techniques, it appears to be premature to correlate the measured blood levels of hydrogen sulfide with the severity of shock or the H2S therapy-related biological outcomes. The available data on the tissue expression of the H2S-releasing enzymes during circulatory shock suggest that a "constitutive" CSE expression may play a crucial role of for the maintenance of organ function, at least in the kidney. The data also indicate that increased CBS and CSE expression, in particular in the lung and the liver, represents an adaptive response to stress states.


Assuntos
Sulfeto de Hidrogênio , Choque , Animais , Testes de Química Clínica , Humanos , Camundongos , Ratos , Choque/sangue , Choque/metabolismo , Choque/fisiopatologia , Sulfetos , Suínos
6.
Biomolecules ; 14(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254698

RESUMO

In general, females present with stronger immune responses than males, but scarce data are available on sex-specific differences in immunometabolism. In this study, we characterized porcine peripheral blood mononuclear cell (PBMC) and granulocyte energy metabolism using a Bayesian 13C-metabolic flux analysis, which allowed precise determination of the glycolytic, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA) fluxes, together with an assessment of the superoxide anion radical (O2•-) production and mitochondrial O2 consumption. A principal component analysis allowed for identifying the cell type-specific patterns of metabolic plasticity. PBMCs displayed higher TCA cycle activity, especially glutamine-derived aspartate biosynthesis, which was directly related to mitochondrial respiratory activity and inversely related to O2•- production. In contrast, the granulocytes mainly utilized glucose via glycolysis, which was coupled to oxidative PPP utilization and O2•- production rates. The granulocytes of the males had higher oxidative PPP fluxes compared to the females, while the PBMCs of the females displayed higher non-oxidative PPP fluxes compared to the males associated with the T helper cell (CD3+CD4+) subpopulation of PBMCs. The observed sex-specific differences were not directly attributable to sex steroid plasma levels, but we detected an inverse correlation between testosterone and aldosterone plasma levels and showed that aldosterone levels were related with non-oxidative PPP fluxes of both cell types.


Assuntos
Leucócitos Mononucleares , Via de Pentose Fosfato , Feminino , Masculino , Suínos , Animais , Aldosterona , Teorema de Bayes , Análise do Fluxo Metabólico , Caracteres Sexuais
7.
Anal Chem ; 85(5): 2697-702, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23320383

RESUMO

With the availability of broadly tunable external cavity quantum cascade lasers (EC-QCLs), particularly bright mid-infrared (MIR; 3-20 µm) light sources are available offering high spectral brightness along with an analytically relevant spectral tuning range of >2 µm. Accurate isotope ratio determination of (12)CO2 and (13)CO2 in exhaled breath is of critical importance in the field of breath analysis, which may be addressed via measurements in the MIR spectral regime. Here, we combine for the first time an EC-QCL tunable across the (12)CO2/(13)CO2 spectral band with a miniaturized hollow waveguide gas cell for quantitatively determining the (12)CO2/(13)CO2 ratio within the exhaled breath of mice. Due to partially overlapping spectral features, these studies are augmented by appropriate multivariate data evaluation and calibration techniques based on partial least-squares regression along with optimized data preprocessing. Highly accurate determinations of the isotope ratio within breath samples collected from a mouse intensive care unit validated via hyphenated gas chromatography-mass spectrometry confirm the viability of IR-HWG-EC-QCL sensing techniques for isotope-selective exhaled breath analysis.


Assuntos
Testes Respiratórios/instrumentação , Lasers , Semicondutores , Dióxido de Carbono/análise , Humanos
8.
Crit Care Med ; 41(7): e105-17, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23507715

RESUMO

OBJECTIVES: Accidental hypothermia increases mortality and morbidity after hemorrhage, but controversial data are available on the effects of therapeutic hypothermia. Therefore, we tested the hypothesis whether moderate pretreatment hypothermia would beneficially influence organ dysfunction during long-term, porcine hemorrhage and resuscitation. DESIGN: Prospective, controlled, randomized study. SETTING: University animal research laboratory. SUBJECTS: Twenty domestic pigs of either gender. INTERVENTIONS: Using an extracorporeal heat exchanger, anesthetized and instrumented animals were maintained at 38°C, 35°C, or 32°C core temperature and underwent 4 hours of hemorrhage (removal of 40% of the blood volume and subsequent blood removal/retransfusion to maintain mean arterial pressure at 30 mm Hg). Resuscitation comprised of hydroxyethyl starch and norepinephrine infusion titrated to maintain mean arterial pressure at preshock values. MEASUREMENTS AND MAIN RESULTS: Before, immediately at the end of, and 12 and 22 hours after hemorrhage, we measured systemic and regional hemodynamics (portal vein, hepatic and right kidney artery ultrasound flow probes) and oxygen transport, and nitric oxide and cytokine production. Hemostasis was assessed by rotation thromboelastometry. Postmortem biopsies were analyzed for histomorphology (hematoxylin and eosin staining) and markers of apoptosis (kidney Bcl-xL and caspase-3 expression). Hypothermia at 32°C attenuated the shock-related lactic acidosis but caused metabolic acidosis, most likely resulting from reduced carbohydrate oxidation. Although hypothermia did not further aggravate shock-related coagulopathy, it caused a transitory attenuation of kidney and liver dysfunction, which was ultimately associated with reduced histological damage and more pronounced apoptosis. CONCLUSIONS: During long-term porcine hemorrhage and resuscitation, moderate pretreatment hypothermia was associated with a transitory attenuation of organ dysfunction and less severe histological tissue damage despite more pronounced metabolic acidosis. This effect is possibly due to a switch from necrotic to apoptotic cell death, ultimately resulting from reduced tissue energy deprivation during the shock phase.


Assuntos
Hipotermia Induzida/métodos , Ressuscitação/métodos , Choque Hemorrágico/terapia , Animais , Análise Química do Sangue , Feminino , Glucose/metabolismo , Hemodinâmica , Masculino , Distribuição Aleatória , Choque Hemorrágico/sangue , Suínos , Fatores de Tempo
9.
Anal Bioanal Chem ; 405(14): 4945-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23503745

RESUMO

The (12)CO2/(13)CO2 isotope ratio is a well-known marker in breath for a variety of biochemical processes and enables monitoring, e.g., of the glucose metabolism during sepsis. Using animal models-here, at a mouse intensive care unit-the simultaneous determination of (12)CO2 and (13)CO2 within small volumes of mouse breath was enabled by coupling a novel low-volume hollow waveguide gas cell to a compact Fourier transform infrared spectrometer combined with multivariate data evaluation based on partial least squares regression along with optimized data preprocessing routines.


Assuntos
Testes Respiratórios/instrumentação , Dióxido de Carbono/metabolismo , Expiração/fisiologia , Troca Gasosa Pulmonar/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Animais , Isótopos de Carbono/análise , Interpretação Estatística de Dados , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Análise Multivariada , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Metabolites ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38248827

RESUMO

The pentose phosphate pathway (PPP) plays a key role in the cellular regulation of immune function; however, little is known about the interplay of metabolic adjustments in granulocytes, especially regarding the non-oxidative PPP. For the determination of metabolic mechanisms within glucose metabolism, we propose a novel set of measures for 13C-metabolic flux analysis based on ex vivo parallel tracer experiments ([1,2-13C]glucose, [U-13C]glucose, [4,5,6-13C]glucose) and gas chromatography-mass spectrometry labeling measurements of intracellular metabolites, such as sugar phosphates and their fragments. A detailed constraint analysis showed that the permission range for net and irreversible fluxes was limited to a three-dimensional space. The overall workflow, including its Bayesian flux estimation, resulted in precise flux distributions and pairwise confidence intervals, some of which could be represented as a line due to the strength of their correlation. The principal component analysis that was enabled by these behaviors comprised three components that explained 99.6% of the data variance. It showed that phagocytic stimulation reversed the direction of non-oxidative PPP net fluxes from ribose-5-phosphate biosynthesis toward glycolytic pathways. This process was closely associated with the up-regulation of the oxidative PPP to promote the oxidative burst.

11.
Front Immunol ; 14: 1125594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911662

RESUMO

Introduction: Sodium thiosulfate (Na2S2O3), an H2S releasing agent, was shown to be organ-protective in experimental hemorrhage. Systemic inflammation activates immune cells, which in turn show cell type-specific metabolic plasticity with modifications of mitochondrial respiratory activity. Since H2S can dose-dependently stimulate or inhibit mitochondrial respiration, we investigated the effect of Na2S2O3 on immune cell metabolism in a blinded, randomized, controlled, long-term, porcine model of hemorrhage and resuscitation. For this purpose, we developed a Bayesian sampling-based model for 13C isotope metabolic flux analysis (MFA) utilizing 1,2-13C2-labeled glucose, 13C6-labeled glucose, and 13C5-labeled glutamine tracers. Methods: After 3 h of hemorrhage, anesthetized and surgically instrumented swine underwent resuscitation up to a maximum of 68 h. At 2 h of shock, animals randomly received vehicle or Na2S2O3 (25 mg/kg/h for 2 h, thereafter 100 mg/kg/h until 24 h after shock). At three time points (prior to shock, 24 h post shock and 64 h post shock) peripheral blood mononuclear cells (PBMCs) and granulocytes were isolated from whole blood, and cells were investigated regarding mitochondrial oxygen consumption (high resolution respirometry), reactive oxygen species production (electron spin resonance) and fluxes within the metabolic network (stable isotope-based MFA). Results: PBMCs showed significantly higher mitochondrial O2 uptake and lower O 2 • - production in comparison to granulocytes. We found that in response to Na2S2O3 administration, PBMCs but not granulocytes had an increased mitochondrial oxygen consumption combined with a transient reduction of the citrate synthase flux and an increase of acetyl-CoA channeled into other compartments, e.g., for lipid biogenesis. Conclusion: In a porcine model of hemorrhage and resuscitation, Na2S2O3 administration led to increased mitochondrial oxygen consumption combined with stimulation of lipid biogenesis in PBMCs. In contrast, granulocytes remained unaffected. Granulocytes, on the other hand, remained unaffected. O 2 • - concentration in whole blood remained constant during shock and resuscitation, indicating a sufficient anti-oxidative capacity. Overall, our MFA model seems to be is a promising approach for investigating immunometabolism; especially when combined with complementary methods.


Assuntos
Choque Hemorrágico , Animais , Suínos , Choque Hemorrágico/metabolismo , Leucócitos Mononucleares/metabolismo , Teorema de Bayes , Hemorragia , Lipídeos
12.
Front Immunol ; 14: 1319986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38332911

RESUMO

Introduction: Supplementation with increased inspired oxygen fractions has been suggested to alleviate the harmful effects of tissue hypoxia during hemorrhagic shock (HS) and traumatic brain injury. However, the utility of therapeutic hyperoxia in critical care is disputed to this day as controversial evidence is available regarding its efficacy. Furthermore, in contrast to its hypoxic counterpart, the effect of hyperoxia on the metabolism of circulating immune cells remains ambiguous. Both stimulating and detrimental effects are possible; the former by providing necessary oxygen supply, the latter by generation of excessive amounts of reactive oxygen species (ROS). To uncover the potential impact of increased oxygen fractions on circulating immune cells during intensive care, we have performed a 13C-metabolic flux analysis (MFA) on PBMCs and granulocytes isolated from two long-term, resuscitated models of combined acute subdural hematoma (ASDH) and HS in pigs with and without cardiovascular comorbidity. Methods: Swine underwent resuscitation after 2 h of ASDH and HS up to a maximum of 48 h after HS. Animals received normoxemia (PaO2 = 80 - 120 mmHg) or targeted hyperoxemia (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation, thereafter PaO2 as in the control group). Blood was drawn at time points T1 = after instrumentation, T2 = 24 h post ASDH and HS, and T3 = 48 h post ASDH and HS. PBMCs and granulocytes were isolated from whole blood to perform electron spin resonance spectroscopy, high resolution respirometry and 13C-MFA. For the latter, we utilized a parallel tracer approach with 1,2-13C2 glucose, U-13C glucose, and U-13C glutamine, which covered essential pathways of glucose and glutamine metabolism and supplied redundant data for robust Bayesian estimation. Gas chromatography-mass spectrometry further provided multiple fragments of metabolites which yielded additional labeling information. We obtained precise estimations of the fluxes, their joint credibility intervals, and their relations, and characterized common metabolic patterns with principal component analysis (PCA). Results: 13C-MFA indicated a hyperoxia-mediated reduction in tricarboxylic acid (TCA) cycle activity in circulating granulocytes which encompassed fluxes of glutamine uptake, TCA cycle, and oxaloacetate/aspartate supply for biosynthetic processes. We further detected elevated superoxide levels in the swine strain characterized by a hypercholesterolemic phenotype. PCA revealed cell type-specific behavioral patterns of metabolic adaptation in response to ASDH and HS that acted irrespective of swine strains or treatment group. Conclusion: In a model of resuscitated porcine ASDH and HS, we saw that ventilation with increased inspiratory O2 concentrations (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation) did not impact mitochondrial respiration of PBMCs or granulocytes. However, Bayesian 13C-MFA results indicated a reduction in TCA cycle activity in granulocytes compared to cells exposed to normoxemia in the same time period. This change in metabolism did not seem to affect granulocytes' ability to perform phagocytosis or produce superoxide radicals.


Assuntos
Hematoma Subdural Agudo , Hiperóxia , Choque Hemorrágico , Animais , Suínos , Glutamina/metabolismo , Ciclo do Ácido Cítrico , Análise do Fluxo Metabólico/métodos , Superóxidos , Teorema de Bayes , Granulócitos/metabolismo , Oxigênio , Glucose/metabolismo
13.
Crit Care Med ; 40(7): 2157-67, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22713217

RESUMO

OBJECTIVE: Controversial data are available on the effects of hydrogen sulfide during hemorrhage. Because the clinical significance of hydrogen sulfide administration in rodents may not be applicable to larger species, we tested the hypothesis whether intravenous Na2S (sulfide) would beneficially influence organ dysfunction during long-term, porcine hemorrhage and resuscitation. DESIGN: Prospective, controlled, randomized study. SETTING: University animal research laboratory. SUBJECTS: Forty-five domestic pigs of either gender. INTERVENTIONS: Anesthetized and instrumented animals underwent 4 hrs of hemorrhage (removal of 40% of the blood volume and subsequent blood removal/retransfusion to maintain mean arterial pressure at 30 mm Hg). Sulfide infusion was started 2 hrs before hemorrhage, simultaneously with blood removal or at the beginning of retransfusion of shed blood, and continued for 12 hrs. Resuscitation comprised hydroxyethyl starch and norepinenephrine infusion titrated to maintain mean arterial pressure at preshock values. MEASUREMENTS AND MAIN RESULTS: Before, immediately at the end of and 12 and 22 hrs after hemorrhage, we measured systemic and regional hemodynamics (portal vein, hepatic and right kidney artery ultrasound flow probes) and oxygen transport, nitric oxide and cytokine production (nitrate+nitrite, interleukin-6, tumor necrosis factor-α levels). Postmortem biopsies were analyzed for histomorphology (hematoxylin and eosin staining) and DNA damage (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling staining). The progressive kidney (creatinine levels, creatinine clearance), liver (transaminase activities, bilirubin levels), and cardiocirculatory (norepipnehrine requirements, troponin I levels) dysfunction was attenuated in the simultaneous treatment group only, which coincided with reduced lung, liver, and kidney histological damage. Sulfide reduced mortality, however, irrespective of the timing of its administration. CONCLUSIONS: While the sulfide-induced protection against organ injury was only present when initiated simultaneously with blood removal, it was largely unrelated to hypothermia. The absence of sulfide-mediated protection in the pretreatment protocol may be due to the accumulation of sulfide during low flow states. In conclusion, sulfide treatment can be effective in hemorrhagic shock, but its effectiveness is restricted to a narrow timing and dosing window.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Ressuscitação/métodos , Choque Hemorrágico/tratamento farmacológico , Bilirrubina/metabolismo , Creatinina/análise , Feminino , Humanos , Derivados de Hidroxietil Amido/farmacologia , Infusões Intravenosas , Fígado/metabolismo , Masculino , Norepinefrina/farmacologia , Substitutos do Plasma/farmacologia , Distribuição Aleatória , Transaminases/metabolismo , Troponina I/sangue
14.
Anal Bioanal Chem ; 402(1): 397-404, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22086399

RESUMO

Mouse sepsis models are used to gain insight into the complex processes involved with patients suffering from glucose metabolism disorders. Measuring the expiratory release of (13)CO(2) after administering stable labeled (13)C(6)-glucose enables assessment of the in vivo integrity and functionality of key metabolic processes. In the present study, we demonstrate that Fourier transform infrared spectroscopy operating in the mid-infrared spectral regime (2-20 µm) combined with hollow waveguide gas sensing modules simultaneously serving as a miniaturized gas cell and as a waveguide are capable of quantitatively monitoring (13)CO(2) enrichment levels in low volume mouse breath samples.


Assuntos
Técnicas Biossensoriais/métodos , Testes Respiratórios/métodos , Dióxido de Carbono/análise , Transtornos do Metabolismo de Glucose/diagnóstico , Transtornos do Metabolismo de Glucose/fisiopatologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Técnicas Biossensoriais/instrumentação , Testes Respiratórios/instrumentação , Dióxido de Carbono/metabolismo , Expiração , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/metabolismo , Humanos , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação
15.
J Steroid Biochem Mol Biol ; 224: 106163, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995415

RESUMO

Discovered about 50 years ago, the four C21 steroidal acids (α-)cortolic acid, ß-cortolic acid, (α­)cortolonic acid and ß-cortolonic acid present the oxidative end products of cortisol metabolism. Undergoing renal elimination, these cortoic acids have been assumed to constitute up to 25 % of total urinary cortisol metabolites. However, their analysis has been difficult, only few data has been published in adults, and this class of steroids has become practically forgotten. Since data in children are lacking and nothing is known about their metabolism during human development, we aimed at establishing a more practical analytical method and determined their urinary concentrations in a high number of healthy subjects. In our method, 5-mL-aliquots of 24-hour urine samples were subjected to solid phase extraction (C18 cartridges), followed by strong anion exchange chromatography, and formation of 2-propylester-trimethylsilylether derivatives (2-PR/TMS). The cortoic acids were quantified by targeted gas chromatography-mass spectrometry (GC-MS) using a nonpolar GC column and selected ion monitoring (SIM). Baseline separation of all cortoic acids was achieved. Calibration graphs were linear (R2 > 0.98). Variations in precision and accuracy were less than 15 %, respectively. The detection limit was 100 pg (injected) with a signal-to-noise ratio of 3. 240 specimens from 24-hour urine collections from healthy children (120 boys, 120 girls, aged 3-18 years; DONALD study) were analyzed for cortoic acids and neutral cortisol metabolites to create first reference ranges. The profile of cortoic acids was dominated by α-cortolonic acid with excretion rates up to 70 µg/d. Absolute excretion rates of cortoic acids increased with age, their total excretion rates ranged between 11.0 and 127.3 µg/d (median 45.7 µg/d), but did not show any sexual dimorphism. Since cortoic acids make up only about 1 % of total urinary cortisol metabolites, determination of neutral urinary steroids reliably allows assessment of cortisol production. However, cortoic acids might present potential biomarkers of the body's redox state.


Assuntos
Líquidos Corporais , Hidrocortisona , Masculino , Adulto , Feminino , Humanos , Criança , Hidrocortisona/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Esteroides/urina , Líquidos Corporais/metabolismo
16.
Front Med (Lausanne) ; 9: 878823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572988

RESUMO

Background: Sodium thiosulfate (STS) is a recognized drug with antioxidant and H2S releasing properties. We recently showed that STS attenuated organ dysfunction and injury during resuscitation from trauma-and-hemorrhage in CSE-ko mice, confirming its previously described organ-protective and anti-inflammatory properties. The role of H2S in diabetes mellitus type 1 (DMT1) is controversial: genetic DMT1 impairs H2S biosynthesis, which has been referred to contribute to endothelial dysfunction and cardiomyopathy. In contrast, development and severity of hyperglycemia in streptozotocin(STZ)-induced DMT1 was attenuated in CSE-ko mice. Therefore, we tested the hypothesis whether STS would also exert organ-protective effects in CSE-ko mice with STZ-induced DMT1, similar to our findings in animals without underlying co-morbidity. Methods: Under short-term anesthesia with sevoflurane and analgesia with buprenorphine CSE-ko mice underwent DMT1-induction by single STZ injection (100 µg⋅g-1). Seven days later, animals underwent blast wave-induced blunt chest trauma and surgical instrumentation followed by 1 h of hemorrhagic shock (MAP 35 ± 5 mmHg). Resuscitation comprised re-transfusion of shed blood, lung-protective mechanical ventilation, fluid resuscitation and continuous i.v. norepinephrine together with either i.v. STS (0.45 mg⋅g-1) or vehicle (n = 9 in each group). Lung mechanics, hemodynamics, gas exchange, acid-base status, stable isotope-based metabolism, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, chemokines, and immunoblotting. Results: Diabetes mellitus type 1 was associated with more severe circulatory shock when compared to our previous study using the same experimental design in CSE-ko mice without co-morbidity. STS did not exert any beneficial therapeutic effect. Most of the parameters measured of the inflammatory response nor the tissue expression of marker proteins of the stress response were affected either. Conclusion: In contrast to our previous findings in CSE-ko mice without underlying co-morbidity, STS did not exert any beneficial therapeutic effect in mice with STZ-induced DMT1, possibly due to DMT1-related more severe circulatory shock. This result highlights the translational importance of both integrating standard ICU procedures and investigating underlying co-morbidity in animal models of shock research.

17.
Mol Metab ; 57: 101424, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954109

RESUMO

OBJECTIVES: Glucocorticoids (GCs) are one of the most widely prescribed anti-inflammatory drugs. By acting through their cognate receptor, the glucocorticoid receptor (GR), GCs downregulate the expression of pro-inflammatory genes and upregulate the expression of anti-inflammatory genes. Metabolic pathways have recently been identified as key parts of both the inflammatory activation and anti-inflammatory polarization of macrophages, immune cells responsible for acute inflammation and tissue repair. It is currently unknown whether GCs control macrophage metabolism, and if so, to what extent metabolic regulation by GCs confers anti-inflammatory activity. METHODS: Using transcriptomic and metabolomic profiling of macrophages, we identified GC-controlled pathways involved in metabolism, especially in mitochondrial function. RESULTS: Metabolic analyses revealed that GCs repress glycolysis in inflammatory myeloid cells and promote tricarboxylic acid (TCA) cycle flux, promoting succinate metabolism and preventing intracellular accumulation of succinate. Inhibition of ATP synthase attenuated GC-induced transcriptional changes, likely through stalling of TCA cycle anaplerosis. We further identified a glycolytic regulatory transcription factor, HIF1α, as regulated by GCs, and as a key regulator of GC responsiveness during inflammatory challenge. CONCLUSIONS: Our findings link metabolism to gene regulation by GCs in macrophages.


Assuntos
Ciclo do Ácido Cítrico , Glucocorticoides , Glucocorticoides/farmacologia , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
18.
Front Immunol ; 13: 980707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172380

RESUMO

Introduction: We previously showed that attenuated glucocorticoid receptor (GR) function in mice (GRdim/dim) aggravates systemic hypotension and impairs organ function during endotoxic shock. Hemorrhagic shock (HS) causes impaired organ perfusion, which leads to tissue hypoxia and inflammation with risk of organ failure. Lung co-morbidities like chronic obstructive pulmonary disease (COPD) can aggravate tissue hypoxia via alveolar hypoxia. The most common cause for COPD is cigarette smoke (CS) exposure. Therefore, we hypothesized that affecting GR function in mice (GRdim/dim) and pre-traumatic CS exposure would further impair hemodynamic stability and organ function after HS. Methods: After 3 weeks of CS exposure, anesthetized and mechanically ventilated GRdim/dim and GR+/+ mice underwent pressure-controlled HS for 1h via blood withdrawal (mean arterial pressure (MAP) 35mmHg), followed by 4h of resuscitation with re-transfusion of shed blood, colloid fluid infusion and, if necessary, continuous intravenous norepinephrine. Acid-base status and organ function were assessed together with metabolic pathways. Blood and organs were collected at the end of the experiment for analysis of cytokines, corticosterone level, and mitochondrial respiratory capacity. Data is presented as median and interquartile range. Results: Nor CS exposure neither attenuated GR function affected survival. Non-CS GRdim/dim mice had a higher need of norepinephrine to keep target hemodynamics compared to GR+/+ mice. In contrast, after CS exposure norepinephrine need did not differ significantly between GRdim/dim and GR+/+ mice. Non-CS GRdim/dim mice presented with a lower pH and increased blood lactate levels compared to GR+/+ mice, but not CS exposed mice. Also, higher plasma concentrations of some pro-inflammatory cytokines were observed in non-CS GRdim/dim compared to GR+/+ mice, but not in the CS group. With regards to metabolic measurements, CS exposure led to an increased lipolysis in GRdim/dim compared to GR+/+ mice, but not in non-CS exposed animals. Conclusion: Whether less metabolic acidosis or increased lipolysis is the reason or the consequence for the trend towards lower catecholamine need in CS exposed GRdim/dim mice warrants further investigation.


Assuntos
Fumar Cigarros , Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Choque Hemorrágico , Animais , Catecolaminas , Corticosterona , Citocinas/metabolismo , Glucocorticoides , Hipóxia/complicações , Lactatos , Pneumopatias/complicações , Camundongos , Norepinefrina , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Choque Hemorrágico/complicações
19.
Shock ; 57(1): 131-139, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34172609

RESUMO

BACKGROUND: Sodium thiosulfate (Na2S2O3) is a clinically established drug with antioxidant and sulphide-releasing properties. Na2S2O3 mediated neuro- and cardioprotective effects in ischemia/reperfusion models and anti-inflammatory effects in LPS-induced acute lung injury. Moreover, Na2S2O3 improved lung function during resuscitation from hemorrhagic shock in swine with pre-existing atherosclerosis, characterized by decreased expression of cystathionine γ-lyase (CSE), a major source of hydrogen sulfide (H2S) synthesis in the vasculature. Based on these findings, we investigated the effects of Na2S2O3 administration during resuscitation from trauma-and-hemorrhage in mice under conditions of whole body CSE deficit. METHODS: After blast wave-induced blunt chest trauma and surgical instrumentation, CSE knockout (CSE-/-) mice underwent 1 h of hemorrhagic shock (MAP 35 ±â€Š5 mm Hg). At the beginning of resuscitation comprising retransfusion, norepinephrine support and lung-protective mechanical ventilation, animals received either i.v. Na2S2O3 (0.45 mg g-1, n = 12) or vehicle (saline, n = 13). Hemodynamics, acid-base status, metabolism using stable isotopes, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, mitochondrial respiratory capacity, and immunoblotting. RESULTS: Na2S2O3 treatment improved arterial paO2 (P = 0.03) coinciding with higher lung tissue glucocorticoid receptor expression. Norepinephrine requirements were lower in the Na2S2O3 group (P < 0.05), which was associated with lower endogenous glucose production and higher urine output. Na2S2O3 significantly increased renal tissue IκBα and heme oxygenase-1 expression, whereas it lowered kidney IL-6 and MCP-1 levels. CONCLUSION: Na2S2O3 exerted beneficial effects during resuscitation of murine trauma-and-hemorrhage in CSE-/- mice, confirming and extending the previously described organ-protective and anti-inflammatory properties of Na2S2O3. The findings make Na2S2O3 a potentially promising therapeutic option in the context of impaired CSE activity and/or reduced endogenous H2S availability.


Assuntos
Antioxidantes/farmacologia , Ressuscitação , Tiossulfatos/farmacologia , Animais , Quimiocina CCL2/metabolismo , Cistationina gama-Liase/genética , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Pulmão/metabolismo , Camundongos Knockout , Inibidor de NF-kappaB alfa/metabolismo , Norepinefrina/administração & dosagem , Oxigênio/sangue , Receptores de Glucocorticoides/metabolismo , Choque Hemorrágico/terapia , Traumatismos Torácicos/terapia , Urina , Vasoconstritores/administração & dosagem
20.
J Breath Res ; 15(2): 026013, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33630755

RESUMO

In studies that target specific functions or organs, the response is often overlaid by indirect effects of the intervention on global metabolism. The metabolic side of these interactions can be assessed based on total energy expenditure (TEE) and the contributions of the principal energy sources, carbohydrates, proteins and fat to whole body CO2 production. These parameters can be identified from indirect calorimetry using respiratory oxygen intake and CO2 dioxide production data that are combined with the response of the 13CO2 release in the expired air and the glucose tracer enrichment in plasma following a 13C glucose stable isotope infusion. This concept is applied to a mouse protocol involving anesthesia, mechanical respiration, a disease model, like hemorrhage and therapeutic intervention. It faces challenges caused by a small sample size for both breath and plasma as well as changes in metabolic parameters caused by disease and intervention. Key parameters are derived from multiple measurements, all afflicted with errors that may accumulate leading to unrealistic values. To cope with these challenges, a sensitive on-line breath analysis system based on substrate-integrated hollow waveguide infrared spectroscopy and luminescence (iHWG-IR-LS) was used to monitor gas exchange values. A Bayesian statistical model is developed that uses established equations for indirect calorimetry to predict values for respiratory gas exchange and tracer data that are consistent with the corresponding measurements and also provides statistical error bands for these parameters. With this new methodology, it was possible to estimate important metabolic parameters (respiratory quotient (RQ), relative contribution of carbohydrate, protein and fat oxidation fcarb, ffat and fprot , total energy expenditure TEE) in a resolution never available before for a minimal invasive protocol of mice under anesthesia.


Assuntos
Testes Respiratórios , Animais , Teorema de Bayes , Dióxido de Carbono , Isótopos de Carbono , Luminescência , Camundongos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA