Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 81(4): 814-29, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24559674

RESUMO

The polarization of neurons, which mainly includes the differentiation of axons and dendrites, is regulated by cell-autonomous and non-cell-autonomous factors. In the developing central nervous system, neuronal development occurs in a heterogeneous environment that also comprises extracellular matrices, radial glial cells, and neurons. Although many cell-autonomous factors that affect neuronal polarization have been identified, the microenvironmental cues involved in neuronal polarization remain largely unknown. Here, we show that neuronal polarization occurs in a microenvironment in the lower intermediate zone, where the cell adhesion molecule transient axonal glycoprotein-1 (TAG-1) is expressed in cortical efferent axons. The immature neurites of multipolar cells closely contact TAG-1-positive axons and generate axons. Inhibition of TAG-1-mediated cell-to-cell interaction or its downstream kinase Lyn impairs neuronal polarization. These results show that the TAG-1-mediated cell-to-cell interaction between the unpolarized multipolar cells and the pioneering axons regulates the polarization of multipolar cells partly through Lyn kinase and Rac1.


Assuntos
Axônios/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Contactina 2/metabolismo , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Dendritos/metabolismo , Camundongos , Neurogênese/fisiologia
2.
Nat Commun ; 4: 2740, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24220492

RESUMO

Extracellular factors that inhibit axon growth and intrinsic factors that promote it affect neural regeneration. Therapies targeting any single gene have not yet simultaneously optimized both types of factors. Chondroitin sulphate (CS), a glycosaminoglycan, is the most abundant extracellular inhibitor of axon growth. Here we show that mice carrying a gene knockout for CS N-acetylgalactosaminyltransferase-1 (T1), a key enzyme in CS biosynthesis, recover more completely from spinal cord injury than wild-type mice and even chondroitinase ABC-treated mice. Notably, synthesis of heparan sulphate (HS), a glycosaminoglycan promoting axonal growth, is also upregulated in TI knockout mice because HS-synthesis enzymes are induced in the mutant neurons. Moreover, chondroitinase ABC treatment never induces HS upregulation. Taken together, our results indicate that regulation of a single gene, T1, mediates excellent recovery from spinal cord injury by optimizing counteracting effectors of axon regeneration--an extracellular inhibitor of CS and intrinsic promoters, namely, HS-synthesis enzymes.


Assuntos
Sulfatos de Condroitina/biossíntese , N-Acetilgalactosaminiltransferases/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Knockout , N-Acetilgalactosaminiltransferases/genética , Traumatismos da Medula Espinal/genética
3.
Nat Neurosci ; 16(11): 1556-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056697

RESUMO

Neural progenitors exhibit cell cycle-dependent interkinetic nuclear migration (INM) along the apicobasal axis. Despite recent advances in understanding its underlying molecular mechanisms, the processes to which INM contributes mechanically and the regulation of INM by the apicobasally elongated morphology of progenitors remain unclear. We found that knockdown of the cell-surface molecule TAG-1 resulted in retraction of neocortical progenitors' basal processes. Highly shortened stem-like progenitors failed to undergo basalward INM and became overcrowded in the periventricular (subapical) space. Surprisingly, the overcrowded progenitors left the apical surface and migrated into basal neuronal territories. These observations, together with the results of in toto imaging and physical tests, suggest that progenitors may sense and respond to excessive mechanical stress. Although, unexpectedly, the heterotopic progenitors remained stem-like and continued to sequentially produce neurons until the late embryonic period, histogenesis was severely disrupted. Thus, INM is essential for preventing overcrowding of nuclei and their somata, thereby ensuring normal brain histogenesis.


Assuntos
Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Contactina 2/metabolismo , Células-Tronco Neurais/ultraestrutura , Animais , Ciclo Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/genética , Proliferação de Células , Córtex Cerebral/citologia , Simulação por Computador , Contactina 2/genética , Embrião de Mamíferos , Epitélio/embriologia , Epitélio/fisiologia , Histonas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/fisiologia , Técnicas de Cultura de Órgãos , Interferência de RNA/fisiologia , RNA Interferente Pequeno/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA