Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Front Physiol ; 11: 579117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329028

RESUMO

Intracellular signaling pathways are at the core of cellular information processing. The states of these pathways and their inputs determine signaling dynamics and drive cell function. Within a cancerous tumor, many combinations of cell states and microenvironments can lead to dramatic variations in responses to treatment. Network rewiring has been thought to underlie these context-dependent differences in signaling; however, from a biochemical standpoint, rewiring of signaling networks should not be a prerequisite for heterogeneity in responses to stimuli. Here we address this conundrum by analyzing an in vitro model of the epithelial mesenchymal transition (EMT), a biological program implicated in increased tumor invasiveness, heterogeneity, and drug resistance. We used mass cytometry to measure EGF signaling dynamics in the ERK and AKT signaling pathways before and after induction of EMT in Py2T murine breast cancer cells. Analysis of the data with standard network inference methods suggested EMT-dependent network rewiring. In contrast, use of a modeling approach that adequately accounts for single-cell variation demonstrated that a single reaction-based pathway model with constant structure and near-constant parameters is sufficient to represent differences in EGF signaling across EMT. This result indicates that rewiring of the signaling network is not necessary for heterogeneous responses to a signal and that unifying reaction-based models should be employed for characterization of signaling in heterogeneous environments, such as cancer.

2.
Nat Biotechnol ; 35(2): 164-172, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28092656

RESUMO

Signaling networks are key regulators of cellular function. Although the concentrations of signaling proteins are perturbed in disease states, such as cancer, and are modulated by drug therapies, our understanding of how such changes shape the properties of signaling networks is limited. Here we couple mass-cytometry-based single-cell analysis with overexpression of tagged signaling proteins to study the dependence of signaling relationships and dynamics on protein node abundance. Focusing on the epidermal growth factor receptor (EGFR) signaling network in HEK293T cells, we analyze 20 signaling proteins during a 1-h EGF stimulation time course using a panel of 35 antibodies. Data analysis with BP-R2, a measure that quantifies complex signaling relationships, reveals abundance-dependent network states and identifies novel signaling relationships. Further, we show that upstream signaling proteins have abundance-dependent effects on downstream signaling dynamics. Our approach elucidates the influence of node abundance on signal transduction networks and will further our understanding of signaling in health and disease.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Citometria de Fluxo/métodos , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Proteoma/metabolismo , Simulação por Computador , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA