Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Chem Biol ; 11(4): 256-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730549

RESUMO

In the biosynthetic pathway of the spinosyn insecticides, the tailoring enzyme SpnF performs a [4 + 2] cycloaddition on a 22-membered macrolactone to forge an embedded cyclohexene ring. To learn more about this reaction, which could potentially proceed through a Diels-Alder mechanism, we determined the 1.50-Å-resolution crystal structure of SpnF bound to S-adenosylhomocysteine. This sets the stage for advanced experimental and computational studies to determine the precise mechanism of SpnF-mediated cyclization.


Assuntos
Reação de Cicloadição , Enzimas/química , Liases Intramoleculares/química , Lactonas/química , Actinobacteria/metabolismo , Catálise , Chaperonina 10/química , Chaperonina 60/química , Química Orgânica/métodos , Clonagem Molecular , Cristalografia por Raios X , Ciclização , Elétrons , Escherichia coli/enzimologia , Inseticidas/química , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Mutação
2.
J Struct Biol ; 193(3): 196-205, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724270

RESUMO

Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line.


Assuntos
Motivos de Aminoácidos/genética , Complexos Multiproteicos/química , Polienos/química , Policetídeo Sintases/química , Bacillus subtilis/química , Bacillus subtilis/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Complexos Multiproteicos/genética , Polienos/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/ultraestrutura , Estrutura Terciária de Proteína
3.
Plasmid ; 76: 66-71, 2014 11.
Artigo em Inglês | MEDLINE | ID: mdl-25304917

RESUMO

The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast.


Assuntos
Clonagem Molecular/métodos , Vetores Genéticos/genética , Recombinação Homóloga , Saccharomyces cerevisiae/genética , Primers do DNA , Reação em Cadeia da Polimerase/métodos
4.
ACS Synth Biol ; 8(9): 2017-2024, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31469555

RESUMO

The proteins of trans-acyltransferase modular polyketide synthases (PKSs) self-organize into assembly lines, enabling the multienzyme biosynthesis of complex organic molecules. Docking domains comprised of ∼25 residues at the C- and N-termini of these polypeptides (CDDs and NDDs) help drive this association through the formation of four-helix bundles. Molecular connectors like these are desired in synthetic contexts, such as artificial biocatalytic systems and biomaterials, to orthogonally join proteins. Here, the ability of six CDD/NDD pairs to link non-PKS proteins is examined using green fluorescent protein (GFP) variants. As observed through size-exclusion chromatography and Förster resonance energy transfer (FRET), matched but not mismatched pairs of Venus+CDD and NDD+mTurquoise2 fusion proteins associate with low micromolar affinities.


Assuntos
Simulação de Acoplamento Molecular , Policetídeo Sintases/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutagênese , Peptídeos/química , Peptídeos/metabolismo , Policetídeo Sintases/química
5.
ACS Chem Biol ; 13(4): 975-983, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29481043

RESUMO

trans-Acyltransferase assembly lines possess enzymatic domains often not observed in their better characterized cis-acyltransferase counterparts. Within this repertoire of largely unexplored biosynthetic machinery is a class of enzymes called the pyran synthases that catalyze the formation of five- and six-membered cyclic ethers from diverse polyketide chains. The 1.55 Å resolution crystal structure of a pyran synthase domain excised from the ninth module of the sorangicin assembly line highlights the similarity of this enzyme to the ubiquitous dehydratase domain and provides insight into the mechanism of ring formation. Functional assays of point mutants reveal the central importance of the active site histidine that is shared with the dehydratases as well as the supporting role of a neighboring semiconserved asparagine.


Assuntos
Aciltransferases/metabolismo , Policetídeo Sintases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Hidroliases/química , Domínios Proteicos
6.
ACS Chem Biol ; 13(12): 3306-3314, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30371052

RESUMO

The methyl substituents in products of trans-acyltransferase assembly lines are usually incorporated by S-adenosyl-methionine (SAM)-dependent methyltransferase (MT) domains. The gem-dimethyl moieties within the polyketide disorazol are installed through the iterative action of an MT in the third module of its assembly line. The 1.75-Å-resolution crystal structure of this MT helps elucidate how it catalyzes the addition of two methyl groups. Activity assays of point mutants on ß-ketoacyl chains linked to an acyl carrier protein and N-acetylcysteamine provide additional insights into the roles of active site residues. The replacement of an alanine with a phenylalanine at an apparent gatekeeping position resulted in more monomethylation than dimethylation. MTs may form an interface with ketoreductases (KRs) and even mediate the docking of trans-acyltransferase assembly line polypeptides through this association.


Assuntos
Metiltransferases/química , Policetídeo Sintases/química , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutação , Myxococcales/enzimologia , Oxazóis/química , Oxazóis/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Policetídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Alinhamento de Sequência
7.
Structure ; 25(7): 1045-1055.e2, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28625788

RESUMO

In an effort to uncover the structural motifs and biosynthetic logic of the relatively uncharacterized trans-acyltransferase polyketide synthases, we have begun the dissection of the enigmatic dehydrating bimodules common in these enzymatic assembly lines. We report the 1.98 Å resolution structure of a ketoreductase (KR) from the first half of a type A dehydrating bimodule and the 2.22 Å resolution structure of a dehydratase (DH) from the second half of a type B dehydrating bimodule. The KR, from the third module of the bacillaene synthase, and the DH, from the tenth module of the difficidin synthase, possess features not observed in structurally characterized homologs. The DH architecture provides clues for how it catalyzes a unique double dehydration. Correlations between the chemistries proposed for dehydrating bimodules and bioinformatic analysis indicate that type A dehydrating bimodules generally produce an α/ß-cis alkene moiety, while type B dehydrating bimodules generally produce an α/ß-trans, γ/δ-cis diene moiety.


Assuntos
Aciltransferases/química , Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Policetídeo Sintases/química , Aciltransferases/metabolismo , Oxirredutases do Álcool/metabolismo , Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Policetídeo Sintases/metabolismo
8.
ACS Chem Biol ; 11(9): 2466-74, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27362945

RESUMO

The polypeptides of multimodular polyketide synthases self-assemble into biosynthetic factories. While the docking domains that mediate the assembly of cis-acyltransferase polyketide synthase polypeptides are well-studied, those of the more recently discovered trans-acyltransferase polyketide synthases have just started to be described. Located at the C- and N-termini of many polypeptides, these 25-residue, two-helix, pseudosymmetric motifs noncovalently connect domains both between and within modules. Domains expressed with their natural, cognate docking motifs formed complexes stable to size-exclusion chromatography with 1-10 µM dissociation constants as measured by isothermal titration calorimetry. Deletion and swapping experiments demonstrate portability of the docking motifs. A 1.72 Å-resolution structure of the N-terminal portion of the macrolactin synthase polypeptide MlnE shows an uncomplexed N-terminal docking motif to be preorganized in the conformation it assumes within the docking domain complex.


Assuntos
Aciltransferases/química , Policetídeo Sintases/química , Cristalografia por Raios X , Modelos Moleculares
9.
Chem Commun (Camb) ; 52(57): 8822-5, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27346052

RESUMO

C-methyltransferases (MTs) from modular polyketide synthase assembly lines are relatively rare and unexplored domains that are responsible for installing α-methyl groups into nascent polyketide backbones. The stage at which these synthase-embedded enzymes operate during polyketide biosynthesis has yet to be conclusively demonstrated. In this work we establish the activity and substrate preference for six MTs from the gephyronic acid polyketide synthase and demonstrate their ability to methylate both N-acetylcysteamine- and acyl carrier protein-linked ß-ketoacylthioester substrates but not malonyl thioester equivalents. These data strongly indicate that MT-catalyzed methylation occurs immediately downstream of ketosynthase-mediated condensation during polyketide assembly. This work represents the first successful report of MT-catalyzed mono- and dimethylation of simple thioester substrates and provides the groundwork for future mechanistic and engineering studies on this important but poorly understood enzymatic domain.


Assuntos
Policetídeo Sintases/metabolismo , Biocatálise , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Metilação , Conformação Molecular , Myxococcales/enzimologia
10.
Chem Commun (Camb) ; 50(40): 5276-8, 2014 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-24196586

RESUMO

A method for monitoring in vitro polyketide synthesis has been developed whereby nonchromophoric polyketide products are made brightly fluorescent in a simple, rapid, inexpensive, and bioorthogonal manner through CuAAC with a sulforhodamine B azide derivative.


Assuntos
Azidas/química , Química Click , Corantes Fluorescentes , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Rodaminas , Catálise , Cobre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA