Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO J ; 26(20): 4347-58, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17882259

RESUMO

Cytochrome c oxidase (complex IV) of the respiratory chain is assembled from nuclear and mitochondrially-encoded subunits. Defects in the assembly process lead to severe human disorders such as Leigh syndrome. Shy1 is an assembly factor for complex IV in Saccharomyces cerevisiae and mutations of its human homolog, SURF1, are the most frequent cause for Leigh syndrome. We report that Shy1 promotes complex IV biogenesis through association with different protein modules; Shy1 interacts with Mss51 and Cox14, translational regulators of Cox1. Additionally, Shy1 associates with the subcomplexes of complex IV that are potential assembly intermediates. Formation of these subcomplexes depends on Coa1 (YIL157c), a novel assembly factor that cooperates with Shy1. Moreover, partially assembled forms of complex IV bound to Shy1 and Cox14 can associate with the bc1 complex to form transitional supercomplexes. We suggest that Shy1 links Cox1 translational regulation to complex IV assembly and supercomplex formation.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/fisiologia , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Genes Fúngicos , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Ligação Proteica , Mapeamento de Interação de Proteínas
2.
Biochim Biophys Acta ; 1793(1): 52-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18590776

RESUMO

The mitochondrial inner membrane has a central function for the energy metabolism of the cell. The respiratory chain generates a proton gradient across the inner mitochondrial membrane, which is used to produce ATP by the F1Fo-ATPase. To maintain the electrochemical gradient, the inner membrane represents an efficient permeability barrier for small molecules. Nevertheless, metabolites as well as polypeptide chains need to be transported across the inner membrane while the electrochemical gradient is retained. While specialized metabolite carrier proteins mediate the transport of small molecules, dedicated protein translocation machineries in the inner mitochondrial membrane (so called TIM complexes) transport precursor proteins across the inner membrane. Here we describe the organization of the TIM complexes and discuss the current models as to how they mediate the posttranslational import of proteins across and into the inner mitochondrial membrane.


Assuntos
Proteínas de Transporte/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Precursores de Proteínas/metabolismo , Animais , Transporte Biológico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Biológicos , Subunidades Proteicas/metabolismo , Transporte Proteico
3.
EMBO Rep ; 9(6): 548-54, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18421298

RESUMO

The mitochondrial intermembrane space contains a family of small Tim proteins that function as essential chaperones for protein import. The soluble Tim9-Tim10 complex transfers hydrophobic precursor proteins through the aqueous intermembrane space to the carrier translocase of the inner membrane (TIM22 complex). Tim12, a peripheral membrane subunit of the TIM22 complex, is thought to recruit a portion of Tim9-Tim10 to the inner membrane. It is not known, however, how Tim12 is assembled. We have identified a new intermediate in the biogenesis pathway of Tim12. A soluble form of Tim12 first assembles with Tim9 and Tim10 to form a Tim12-core complex. Tim12-core then docks onto the membrane-integrated subunits of the TIM22 complex to form the holo-translocase. Thus, the function of Tim12 in linking soluble and membrane-integrated subunits of the import machinery involves a sequential assembly mechanism of the translocase through a soluble intermediate complex of the three essential small Tim proteins.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mitocondriais/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Complexos Multiproteicos/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Subunidades Proteicas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Sci Rep ; 9(1): 7874, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133707

RESUMO

Disturbance of the circadian clock has been associated with increased risk of cardio-metabolic disorders. Previous studies showed that optimal timing of food intake can improve metabolic health. We hypothesized that time-restricted feeding could be a strategy to minimize long term adverse metabolic health effects of shift work and jetlag. In this study, we exposed female FVB mice to weekly alternating light-dark cycles (i.e. 12 h shifts) combined with ad libitum feeding, dark phase feeding or feeding at a fixed clock time, in the original dark phase. In contrast to our expectations, long-term disturbance of the circadian clock had only modest effects on metabolic parameters. Mice fed at a fixed time showed a delayed adaptation compared to ad libitum fed animals, in terms of the similarity in 24 h rhythm of core body temperature, in weeks when food was only available in the light phase. This was accompanied by increased plasma triglyceride levels and decreased energy expenditure, indicating a less favorable metabolic state. On the other hand, dark phase feeding accelerated adaptation of core body temperature and activity rhythms, however, did not improve the metabolic state of animals compared to ad libitum feeding. Taken together, restricting food intake to the active dark phase enhanced adaptation to shifts in the light-dark schedule, without significantly affecting metabolic parameters.


Assuntos
Jejum , Fotoperíodo , Animais , Temperatura Corporal , Metabolismo Energético , Feminino , Metabolismo dos Lipídeos , Lipídeos/sangue , Doenças Metabólicas/sangue , Doenças Metabólicas/metabolismo , Camundongos
5.
Mol Biol Cell ; 21(9): 1494-504, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20219971

RESUMO

F(1)F(o)-ATP synthase is a key enzyme of oxidative phosphorylation that is localized in the inner membrane of mitochondria. It uses the energy stored in the proton gradient across the inner mitochondrial membrane to catalyze the synthesis of ATP from ADP and phosphate. Dimeric and higher oligomeric forms of ATP synthase have been observed in mitochondria from various organisms. Oligomerization of ATP synthase is critical for the morphology of the inner mitochondrial membrane because it supports the generation of tubular cristae membrane domains. Association of individual F(1)F(o)-ATP synthase complexes is mediated by the membrane-embedded F(o)-part. Several subunits were mapped to monomer-monomer-interfaces of yeast ATP synthase complexes, but only Su e (Atp21) and Su g (Atp20) have so far been identified as crucial for the formation of stable dimers. We show that two other small F(o)-components, Su k (Atp19) and Su i (Atp18) are involved in the stepwise assembly of F(1)F(o)-ATP synthase dimers and oligomers. We have identified an intermediate form of the ATP synthase dimer, which accumulates in the absence of Su i. Moreover, our data indicate that Su i facilitates the incorporation of newly synthesized subunits into ATP synthase complexes.


Assuntos
Adenosina Trifosfatases/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Eletroforese/métodos , Eletroforese em Gel de Poliacrilamida , Deleção de Genes , Immunoblotting , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Multimerização Proteica , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
J Mol Biol ; 392(4): 855-61, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19635484

RESUMO

Mitochondrial F(1)F(o)-ATP synthase catalyzes the formation of ATP from ADP and inorganic phosphate. The enzyme is found in monomeric, dimeric and higher oligomeric forms in the inner mitochondrial membrane. Dimerization of ATP synthase complexes is a prerequisite for the generation of larger oligomers that promote membrane bending and formation of tubular cristae membranes. Two small proteins of the membrane-embedded F(o)-domain, subunit e (Su e; Atp21) and Su g (Atp20), were identified as dimer-specific subunits of yeast ATP synthase and shown to be required for stabilization of the dimers. We have identified two distinct monomeric forms of yeast ATP synthase. Su e and Su g are present not only in the dimer but also in one of the monomeric forms. We demonstrate that Su e and Su g sequentially assemble with monomeric ATP synthase to form a dimerization-competent primed monomer. We conclude that association of Su e and Su g with monomeric F(1)F(o)-ATP synthase represents an initial step of oligomer formation.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/metabolismo , Multimerização Proteica , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dimerização , Ligação Proteica , Multimerização Proteica/fisiologia , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
7.
Mol Cell Biol ; 28(13): 4251-60, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18458057

RESUMO

The mitochondrial inner membrane contains preprotein translocases that mediate insertion of hydrophobic proteins. Little is known about how the individual components of these inner membrane preprotein translocases combine to form multisubunit complexes. We have analyzed the assembly pathway of the three membrane-integral subunits Tim18, Tim22, and Tim54 of the twin-pore carrier translocase. Tim54 displayed the most complex pathway involving four preprotein translocases. The precursor is translocated across the intermembrane space in a supercomplex of outer and inner membrane translocases. The TIM10 complex, which translocates the precursor of Tim22 through the intermembrane space, functions in a new posttranslocational manner: in case of Tim54, it is required for the integration of Tim54 into the carrier translocase. Tim18, the function of which has been unknown so far, stimulates integration of Tim54 into the carrier translocase. We show that the carrier translocase is built via a modular process and that each subunit follows a different assembly route. Membrane insertion and assembly into the oligomeric complex are uncoupled for each precursor protein. We propose that the mitochondrial assembly machinery has adapted to the needs of each membrane-integral subunit and that the uncoupling of translocation and oligomerization is an important principle to ensure continuous import and assembly of protein complexes in a highly active membrane.


Assuntos
Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Membrana/metabolismo , Peso Molecular , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Transporte Proteico
8.
Mol Cell Proteomics ; 6(11): 1896-906, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17761666

RESUMO

Mitochondria are crucial for numerous cellular processes, yet the regulation of mitochondrial functions is only understood in part. Recent studies indicated that the number of mitochondrial phosphoproteins is higher than expected; however, the effect of reversible phosphorylation on mitochondrial structure and function has only been defined in a few cases. It is thus crucial to determine authentic protein phosphorylation sites from highly purified mitochondria in a genetically tractable organism. The yeast Saccharomyces cerevisiae is a major model organism for the analysis of mitochondrial functions. We isolated highly pure yeast mitochondria and performed a systematic analysis of phosphorylation sites by a combination of different enrichment strategies and mass spectrometry. We identified 80 phosphorylation sites in 48 different proteins. These mitochondrial phosphoproteins are involved in critical mitochondrial functions, including energy metabolism, protein biogenesis, fatty acid metabolism, metabolite transport, and redox regulation. By combining yeast genetics and in vitro biochemical analysis, we found that phosphorylation of a serine residue in subunit g (Atp20) regulates dimerization of the mitochondrial ATP synthase. The authentic phosphoproteome of yeast mitochondria will represent a rich source to uncover novel roles of reversible protein phosphorylation.


Assuntos
Proteínas Mitocondriais/análise , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosfoproteínas/análise , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Fosfoproteínas/classificação , Fosfoproteínas/metabolismo , Fosforilação , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA