Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041191

RESUMO

Cycloreversion of diheptacenes, the covalently bound dimers of heptacene, in the solid state produces heptacene. In addition, diheptacendiyl diradical can be detected by ESR spectroscopy. The diradical has a small singlet-triplet energy gap of -0.02 kJ mol-1 (-4.8 × 10-3 kcal mol-1) in favor of the singlet state and is persistent in solid heptacene.

2.
J Phys Chem Lett ; 15(9): 2332-2336, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38386914

RESUMO

The ionization energy is a fundamental property that is relevant to charge transport in organic semiconductors. We report adiabatic ionization energies (AIEs) of heptacene at 6.21 and 7.20 eV for the X̃+B2g and Ã+Au states, respectively, as the next larger member of the acene series using mass- and isomer-selective double imaging photoelectron photoion coincidence spectroscopy. The X̃+ state energy decreases monotonically with an increase in size within the homologous series of acenes and approaches an asymptotic limit [AIE(polyacene) = 5.94 ± 0.06 eV] based on a fit with an exponential decay function. As byproducts of heptacene formation from cycloreversion of diheptacenes, 5,18-, 7,16-, and 6,17-dihydroheptacene can be detected, and their AIE is similar to that of their largest acene subunit (anthracene and tetracene, respectively), in very good agreement with computational treatments.

3.
J Phys Condens Matter ; 35(47)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37586386

RESUMO

The adsorption of heptacene (7 A) on Cu(110) and Cu(110)-(2 × 1)-O was studied with scanning tunneling microscopy, photoemission orbital tomography and density functional calculations to reveal the influence of surface passivation on the molecular geometry and electronic states. We found that the charge transfer into the 7 A molecules on Cu(110) is completely suppressed for the oxygen-modified Cu surface. The molecules are aligned along the Cu-O rows and uncharged. They are tilted due to the geometry enforced by the substrate and the ability to maximize intermolecular π-π overlap, which leads to strong π-band dispersion. The HOMO-LUMO gap of these decoupled molecules is significantly larger than that reported on weakly interacting metal surfaces. Finally, the Cu-O stripe phase was used as a template for nanostructured molecular growth and to assess possible confinement effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA