RESUMO
BACKGROUND: Donor human milk banks use Holder pasteurization (HoP; 62.5°C, 30 min) to reduce pathogens in donor human milk, but this process damages some bioactive milk proteins. OBJECTIVES: We aimed to determine minimal parameters for high-pressure processing (HPP) to achieve >5-log reductions of relevant bacteria in human milk and how these parameters affect an array of bioactive proteins. METHODS: Pooled raw human milk inoculated with relevant pathogens (Enterococcus faecium, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii) or microbial quality indicators (Bacillus subtilis and Paenibacillus spp. spores) at 7 log CFU/mL was processed at 300-500 MPa at 16-19°C (due to adiabatic heating) for 1-9 min. Surviving microbes were enumerated using standard plate counting methods. For raw milk, and HPP-treated and HoP-treated milk, the immunoreactivity of an array of bioactive proteins was assessed via ELISA and the activity of bile salt-stimulated lipase (BSSL) was determined via a colorimetric substrate assay. RESULTS: Treatment at 500 MPa for 9 min resulted in >5-log reductions of all vegetative bacteria, but <1-log reduction in B. subtilis and Paenibacillus spores. HoP decreased immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G, lactoferrin, elastase and polymeric immunoglobulin receptor (PIGR) concentrations, and BSSL activity. The treatment at 500 MPa for 9 min preserved more IgA, IgM, elastase, lactoferrin, PIGR, and BSSL than HoP. HoP and HPP treatments up to 500 MPa for 9 min caused no losses in osteopontin, lysozyme, α-lactalbumin and vascular endothelial growth factor. CONCLUSION: Compared with HoP, HPP at 500 MPa for 9 min provides >5-log reduction of tested vegetative neonatal pathogens with improved retention of IgA, IgM, lactoferrin, elastase, PIGR, and BSSL in human milk.
Assuntos
Lactoferrina , Leite Humano , Recém-Nascido , Humanos , Leite Humano/microbiologia , Viabilidade Microbiana , Fator A de Crescimento do Endotélio Vascular , Pasteurização/métodos , Imunoglobulina A , Imunoglobulina M , Elastase PancreáticaRESUMO
The aim of this study was to investigate the temporal stability of microbial contamination during cheddar cheese production by examining patterns of nonstarter bacteria in 60-day aged cheddar collected from the start and end of 30 consecutive production days. Further, we explored the source of these temporal microbial variations by comparing microbial communities in the aged cheese to those on food contact surfaces from a piece of cheesemaking equipment previously identified as a major source of nonstarter bacteria in the same processing environment. 16S rRNA metabarcoding and culture-based sequencing methods identified two Streptococcus sequence variants significantly associated with the end of the production day in both the aged cheese and the cheese processing environment. Closer inspection of these sequence variants in the aged cheese over the 40-day sampling period revealed sinusoidal-like fluctuations in their relative ratios, which appeared to coincide with the Lactococcus starter rotation schedule. These results demonstrate that the microbial composition of finished cheese can vary according to the timing of processing within a production day. Further, our results demonstrate that time-of-day microbial differences in cheese can result from bacterial growth on food contact surfaces and that the composition of these microbial differences is subject to change day-to-day and may be linked to routine changes in the Lactococcus starter culture. IMPORTANCE Long production schedules used in modern cheese manufacturing can create circumstances that support the growth of microorganisms in the cheese processing environment. This work demonstrates that this growth can lead to significant changes in the microbial quality of aged cheese produced later in the production day. Further, we demonstrate that the dominant bacteria associated with these microbial changes throughout production are subject to change between days and might be influenced by specific cheese manufacturing practices. These findings improve understanding of microbial contamination patterns in modern food manufacturing facilities, thereby improving our ability to develop strategies to minimize quality losses due to microbial spoilage.
Assuntos
Queijo , Microbiota , Bactérias/genética , Queijo/microbiologia , Lactococcus , RNA Ribossômico 16S/genéticaRESUMO
Infections resistant to broad spectrum antibiotics due to the emergence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae is of global concern. This study characterizes the resistome (i.e., entire ecology of resistance determinants) of 11 ESBL-producing Escherichia coli isolates collected from eight wastewater treatment utilities across Oregon. Whole genome sequencing was performed to identify the most abundant antibiotic resistance genes including ESBL-associated genes, virulence factors, as well as their sequence types. Moreover, the phenotypes of antibiotic resistance were characterized. ESBL-associated genes (i.e., blaCMY, blaCTX, blaSHV, blaTEM) were found in all but one of the isolates with five isolates carrying two of these genes (four with blaCTX and blaTEM; one with blaCMY and blaTEM). The ampC gene and virulence factors were present in all the E. coli isolates. Across all the isolates, 31 different antibiotic resistance genes were identified. Additionally, all E. coli isolates harbored phenotypic resistance to beta-lactams (penicillins and cephalosporins), while 8 of the 11 isolates carried multidrug resistance phenotypes (resistance to three or more classes of antibiotics). Findings highlight the risks associated with the presence of ESBL-producing E. coli isolates in wastewater systems that have the potential to enter the environment and may pose direct or indirect risks to human health.
Assuntos
Escherichia coli , Purificação da Água , Antibacterianos/farmacologia , Escherichia coli/genética , Oregon , Fatores de Virulência , beta-Lactamases/genéticaRESUMO
The development of antibiotic resistance is a serious public health crisis, reducing our ability to effectively combat infectious bacterial diseases. The parallel study of reduced susceptibility to sanitizers is growing, particularly for environmental foodborne pathogens, such as Listeria monocytogenes. As regulations demand a seek-and-destroy approach for L. monocytogenes, understanding sanitizer efficacy and its uses are critical for the food industry. Studies have reported the ability of L. monocytogenes to survive in sanitizer concentrations 10-1000 times lower than the manufacturer-recommended concentration (MRC). Notably, data show that at MRC and when applied according to the label instructions, sanitizers remain largely effective. Studies also report that variables such as the presence of organic material, application time/temperature, and bacterial attachment to surfaces can impact sanitizer effectiveness. Due to the lack of standardization in the methodology and definitions of sanitizer resistance, tolerance, and susceptibility, different messages are conveyed in different studies. In this review, we examine the diversity of definitions, terminology, and methodologies used in studies examining L. monocytogenes resistance and susceptibility to antimicrobials. Research available to date fails to demonstrate "resistance" of L. monocytogenes to recommended sanitizer treatments as prescribed by the label. As such, sanitizer tolerance would be a more accurate description of L. monocytogenes response to low sanitizer concentrations (i.e., sub-MRC). Conservative use of word "resistance" will reduce confusion and allow for concise messaging as sanitizer research findings are communicated to industry and regulators.
Assuntos
Anti-Infecciosos , Listeria monocytogenes , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Indústria de Processamento de AlimentosRESUMO
Growth of Listeria monocytogenes in cold temperatures coupled with its tolerance of antimicrobials can promote its survival and persistence in food processing environments. The food industry relies heavily on cleaning and sanitation to control L. monocytogenes; therefore, it is important to understand the environmental context (i.e., temperature) on the efficacy of antimicrobials used in food industry. The minimum bactericidal concentrations (MBCs) of an "eco-friendly" citric acid-based (CAB) sanitizer and a conventional quaternary ammonium compound (CQAC) sanitizer were determined against 14 L. monocytogenes isolates at 4-30 °C. A subset of isolates (n = 3) was also exposed to sub-lethal concentrations of sanitizers to assess differences in growth behavior. CAB and CQAC were effective at manufacturer recommended concentrations in liquid assays. The MBC of CAB was significantly lower at 4 °C compared to 23 °C (p < 0.05), whereas the MBC of CQAC was unchanged between 4 °C and 23 °C. Manufacturers' recommendations for dose and duration of CAB and CQAC were unable to consistently achieve a >5-log reduction of L. monocytogenes attached to surfaces. Findings from this study demonstrate the importance of sanitizer evaluation under conditions representative of their use in the food industry.
Assuntos
Ácido Cítrico/farmacologia , Desinfetantes/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Indústria de Processamento de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , TemperaturaRESUMO
Commercial Cheddar cheese production uses an automated, continuous production system that provides favorable conditions for specific undesirable bacterial subpopulations in certain sections of the processing system. The draining and matting conveyor (DMC) is a large, fully enclosed series of conveyor belts that separates curd and whey on the first drain belt and supports the cheddaring process in subsequent sections. In a previous study, we demonstrated that coliforms increase in the draining section of the DMC (pH 6.0-6.3, 36°C) over a typical 18-h production shift and can lead to detectable coliforms in finished cheese. Sampling at the commercial plant indicated 2 sources of very low levels of coliforms: (1) subpasteurized whey and curd entering the DMC and (2) surfaces in the DMC after sanitation. Mitigation of these sources would require different approaches. The aim of this study was to investigate whether naturally low levels of coliforms in whey could increase in the bulk liquid and attach to different surface materials within 18 h. A laboratory-scale system was created to mimic the conditions of the initial draining section of the DMC and consisted of single-pass, naturally contaminated whey (pH 6.3, 35°C) flowing through a bioreactor (1.11 L/h) containing coupons of surface types found in the DMC (stainless steel and polypropylene). Whey inside the bioreactor chamber and surface coupons were enumerated for bacterial subpopulations on selective media for planktonic and attached bacteria, respectively, at 0, 12, 15, and 18 h. Bacterial isolates were identified by 16S rDNA sequencing. Nonstarter bacteria present in the whey at 0 h included coliforms (Enterobacter), Pseudomonas, and Acinetobacter (0.80, 2.55, and 2.32 log cfu/mL, respectively), with each increasing significantly in whey (6.18, 7.00, and 5.89 log cfu/mL) and on coupons (5.20, 6.85, and 5.29 log cfu/cm2, respectively) after 18 h in the continuous flowing system. Scanning electron microscopy confirmed bacterial attachment on both surfaces, with early biofilm development evident on polypropylene coupons by 18 h. Results from this laboratory-scale study demonstrated that naturally low levels of coliforms entering the DMC in the whey could replicate within the conditions of the draining section of the DMC to the levels found in the commercial production environment.
Assuntos
Rios , Soro do Leite , Animais , Bactérias , Biofilmes , Contagem de Colônia Microbiana/veterinária , Aço InoxidávelRESUMO
The detection of coliforms in young cheese is a potential indication of undesirable microbial growth within the processing environment. The aim of this study was to investigate sources and conditions that lead to the intermittent detection of coliforms (1-3 log cfu/g) in young Cheddar cheese at a single commercial facility. Analysis of historical production data, in combination with iterative investigative sampling events, was performed to determine coliform levels in milk, whey, curd, and surfaces at the beginning, middle, and end of the production day. After sanitation, conveyor belt pieces from the draining and matting conveyor (DMC) were collected and evaluated for bacterial survivors using culture-based methods and scanning electron microscopy. Production data analysis indicated that cheese produced later in the production day (≥16 h) was significantly more likely to test positive for coliforms than cheese made earlier in the production day (<12 h). Enumeration of coliforms in raw and heat-treated milk demonstrated that the subpasteurization thermal treatment (67-70°C, 26-28 s) was effective at reducing, but not eliminating, coliforms. Repeated sampling identified the DMC, particularly the drain belt and belt 1, as a critical area that supported coliform growth during the production day. Coliform levels in whey entering the weir maintained a level of <1 cfu/mL throughout production; however, coliform levels in whey below the drain belt increased from <1 cfu/mL at midday (8 h) to 5.04 log cfu/mL by the end of the production day (~18 h). Routine sanitation inside the DMC resulted in undetectable coliform levels on easily accessible surfaces. However, enrichment and scanning electron microscopy of belt sections revealed pockets of viable coliforms and other bacteria in cracks and defects in conveyor belts, indicating that sanitation did not eliminate all viable bacteria. Low levels of coliforms are present in heat-treated milk and survive sanitation in the DMC and could serve as the initial seed for high levels of coliforms at the end of the production day.
Assuntos
Queijo , Animais , Queijo/análise , Contagem de Colônia Microbiana/veterinária , Manipulação de Alimentos , Microbiologia de Alimentos , Leite , Dinâmica PopulacionalRESUMO
Listeria monocytogenes is a significant concern for the produce industry; however, there is limited information to support the practical decision-making to mitigate this risk. This study investigated the prevalence of Listeria spp. and L. monocytogenes in seven produce handling and processing (PHP) facilities in the Pacific Northwest. PHP facilities were defined as facilities that receive raw agricultural commodities and further handle, pack, wash, or process prior to distribution into the retail sector. Environmental swabs (n = 50/facility) were collected in high-risk areas (e.g., near raw product entry points) from seven PHP facilities over two visits. Listeria spp. were isolated using modified ISO 11290-1 method and speciated with Microgen® Listeria-ID. Listeria spp., including L. monocytogenes, were found in 5/7 PHP. Prevalence of Listeria spp. ranged from 2% to 26% in these five facilities. Drains, entry areas, and portable equipment consistently tested positive for Listeria spp. during active production. Two additional sampling rounds (n = 50/round) were conducted in the highest prevalence facility (Facility #1). Overall, Listeria spp. were detected in 44/150 (29.3%) swabs collected from Facility #1. This study demonstrated the high prevalence of Listeria spp. near raw product entry points across PHP facilities.
Assuntos
Contaminação de Equipamentos/estatística & dados numéricos , Manipulação de Alimentos , Microbiologia de Alimentos/métodos , Indústria de Processamento de Alimentos , Listeria/isolamento & purificação , Listeria/classificação , Noroeste dos Estados Unidos , PrevalênciaRESUMO
Bloomy rind cheeses, including Camembert and related varieties, can be produced using alternative processes that vary based on milk preacidification, cutting, curd handling, and ripening parameters. Modification of these parameters creates distinct cheeses such as lactic curd, stabilized curd, and hybrids of the two. The objective of this study was to determine the influence of 5 Camembert-type cheese recipes on the composition and characteristics during ripening. Five varieties of Camembert-type cheese were produced: (1) lactic curd, (2) sweet curd, (3) washed curd, (4) solubilized curd, and (5) stabilized curd. Cheeses were aged at 13°C for 10 d, during the mold growth phase, and 7°C from d 11 until 50. Key quality metrics including texture development, pH (center and surface), and color were monitored throughout shelf-life. Compositional evaluation (d 5; fat, protein, moisture, salt, and minerals) grouped cheeses into 3 categories: (1) lactic curd, (2) sweet and washed curd, and (3) solubilized and stabilized curd. The lactic curd and stabilized curd were consistently the most different varieties for composition and quality metrics. Moisture content of Camembert-type varieties ranged from 53.15 to 57.99%, Ca ranged from 0.23 to 0.45%, and P ranged from 0.21 to 0.40%. All varieties followed the expected pH evolution on the rind and in the paste with the pH of the rind reaching 7 by d 10, and paste pH reaching 7 between 35 and 50 d. The displacement of the paste (distance traveled upon cutting) for the lactic curd was the greatest among the 5 varieties, reaching an average of 27 ± 1.9 mm (mean ± standard error) after 50 d of ripening and 60 min of flow time. The stabilized curd on the other hand traveled the shortest distance, reaching an average of 4 ± 0.4 mm at the same time point. Browning, considered a defect in mold-ripened cheeses, was observed in all varieties, but was most substantial for lactic curd (lightness, L*, decreased from 87.19 to 68.58). Based on these quality metrics the shelf-life of these recipes was estimated with the lactic curd having the shortest, and the stabilized curd having the longest. Examining Camembert-type cheese quality metrics for these 5 varieties can assist cheesemakers during recipe formulation and selection of cheese-making practices to achieve optimum product quality.
Assuntos
Queijo/análise , Manipulação de Alimentos/métodos , Animais , Conservação de Alimentos , Concentração de Íons de Hidrogênio , Leite/química , PaladarRESUMO
Bloomy rind cheeses, including Brie, Camembert, and related varieties, are at high risk of contamination by environmental pathogens during manufacture and ripening. This risk is particularly high during ripening due to open-air exposure of the product. Currently, no kill step is applied after manufacture or post ripening to control food safety risks associated with Listeria monocytogenes contamination. Instead, cheesemakers must rely on sanitation and environmental monitoring to reduce this risk. High-pressure processing (HPP) is a nonthermal food-processing technology that can effectively reduce bacterial contaminants with minimal impact on the organoleptic properties of various foods. The objective of this study was to evaluate HPP as a potential intervention to maintain Camembert cheese quality and reduce risk associated with L. monocytogenes. Timing of HPP treatments (3, 11, and 45 d after manufacture) was based on the growth of L. monocytogenes during Camembert cheese ripening. High-pressure processing treatment of fully ripened cheeses (45 d) resulted in destruction of the surface mold, which caused browning and yellowing of the cheese rind. Applying HPP treatment earlier in the ripening process (11 d) resulted in a similar degradation of cheese appearance, which did not improve with continued ripening. Applying HPP treatment shortly after production (3 d; before the surface flora developed) delayed the development of the cheese rind and the textural ripening of the cheese. This early treatment time also resulted in free whey being expelled from the cheese, creating a firmer body. Applying HPP 11 d after manufacture resulted in >5 log reduction of L. monocytogenes at 450 and 550 MPa with holding times of 10 min. Although HPP was effective at reducing L. monocytogenes associated with bloomy rind cheeses, the quality deterioration would be unacceptable to consumers. Cheesemakers must continue to emphasize sanitation and environmental monitoring to reduce the risk of L. monocytogenes in bloomy rind cheeses.
Assuntos
Queijo , Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Animais , Bovinos , Queijo/microbiologia , Microbiologia de Alimentos , Inocuidade dos Alimentos , Fungos/isolamento & purificação , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/isolamento & purificação , PressãoRESUMO
The Pasteurized Milk Ordinance (PMO) mandates milk hauling sanitation and operational practices; however, the use of vague language (i.e., "as needed") and gaps in processes lead to variability in industry practices. Our aim was to characterize industry milk hauling practices and identify areas that may be an unexplained source of contamination in the dairy processing continuum, and communicate this information with industry to cultivate best practices. The objectives of this study were to (1) survey industry hauling sanitation and operation practices in the Pacific Northwest region of the United States, and (2) quantify microbial populations [aerobic plate count (APC), lactic acid bacteria, coliforms] on the internal surfaces of transfer hoses (tanker and receiving bay) to determine their potential contribution to the microbiological quality of raw milk. Eleven facilities (78% response rate) participated in our survey. All facilities surveyed were compliant with the PMO; however, overall milk reception layout, sanitation practices, and routine maintenance greatly varied between facilities. Farm hose samples (n = 115) had significantly higher microbial loads (APC: mean 4.7 log cfu/100 cm2; median 5.1 log cfu/cm2) than receiving hose samples (n = 57; APC: mean: 2.1 log cfu/100 cm2; median 1.9 log cfu/100 cm2). Microbial populations on transfer hose surfaces did not correlate with time since last cleaning for either tanker or receiving bay hoses. Microbial content of farm hoses is likely to reflect the microbial quality of the previous milk transferred through the hose, making on-farm management practices the primary consideration to maintain low microbiological counts downstream. Upon arrival at the processor, 10% of farm hoses were missing caps. Although this did not correlate with elevated microbiological counts, uncapped farm hoses are exposed to the farm environment, provide opportunity for contamination, and are in violation of the PMO. Through observations made during our studies, manual cleaning procedures appear to be a major weakness in hauling practices and need more attention. Recognizing and communicating variability and areas of weakness allows industry to elevate their hauling sanitation and operational practices to maintain optimum milk microbiological quality.
Assuntos
Indústria de Laticínios/instrumentação , Leite/microbiologia , Saneamento , Meios de Transporte , Animais , Contagem de Colônia Microbiana , Enterobacteriaceae/isolamento & purificação , Lactobacillales/isolamento & purificação , Noroeste dos Estados UnidosRESUMO
The US Pasteurized Milk Ordinance (PMO) allows milk tanker trucks to be used repeatedly for 24 h before mandatory clean-in-place cleaning, but no specifications are given for the length of time a tanker can be empty between loads. We defined a worst-case hauling scenario as a hauling vessel left empty and dirty (idle) for extended periods between loads, especially in warm weather. Initial studies were conducted using 5-gallon milk cans (pilot-scale) as a proof-of-concept and to demonstrate that extended idle time intervals could contribute to compromised raw milk quality. Based on pilot-scale results, a commercial hauling study was conducted through partnership with a Pacific Northwest dairy co-op to verify that extended idle times of 6 h between loads have minimal influence on the microbiological populations and enzyme activity in subsequent loads of milk. Milk cans were used to haul raw milk (load 1), emptied, incubated at 30°C for 3, 6, 10, and 20 h, and refilled with commercially pasteurized whole milk (load 2) to measure cross-contamination. For the commercial-scale study, a single tanker was filled with milk from a farm known to have poorer quality milk (farm A, load 1), emptied, and refilled immediately (0 h) or after a delay (6 h) with milk from a farm known to have superior quality milk (farm B, load 2). In both experiments, milk samples were obtained from each farm's bulk tank and from the milk can or tanker before unloading. Each sample was microbiologically assessed for standard plate count (SPC), lactic acid bacteria (LAB), and coliform counts. Selected isolates were assessed for lipolytic and proteolytic activity using spirit blue agar and skim milk agar, respectively. The pilot-scale experiment effectively demonstrated that extended periods of idle (>3 h) of soiled hauling vessels can significantly affect the microbiological quality of raw milk in subsequent loads; however, extended idle times of 6 h or less would not measurably compromise milk quality in subsequent loads in commercial tankers. Current tanker sanitation practices appear to be sufficient for maintaining raw milk SPC, LAB, and coliform levels, which are important measures of milk quality.
Assuntos
Indústria de Laticínios/métodos , Manipulação de Alimentos/métodos , Leite/química , Animais , Bovinos , Contagem de Colônia Microbiana , Indústria de Laticínios/instrumentação , Fazendas , Contaminação de Alimentos/análise , Manipulação de Alimentos/instrumentação , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/isolamento & purificação , Leite/microbiologia , Veículos Automotores , Noroeste dos Estados Unidos , Fatores de TempoRESUMO
Food Safety Modernization Act (FSMA) has emphasized microbial risks associated with irrigation water. Treasure Valley (eastern Oregon/western Idaho) has the highest yield of dry bulb onions in the country; however, their irrigation water is often non-compliant with current industry and proposed federal standards for fresh produce. Conventional curing practices may provide a mechanism to mitigate irrigation water quality to comply with FSMA regulations. Dry bulb onions were grown in Owyhee silt loam and Semiahmoo muck soils in greenhouses and irrigated with water containing a cocktail of rifampicin-resistant generic Escherichia coli and Salmonella spp. (4.80 log CFU/ml). To mimic conventional practices, mature onions remained undisturbed in soil without irrigation for 12 days prior to being lifted and cured for 16 additional days. Surviving generic E. coli and Salmonella spp. were selectively enumerated on using standard plating (Hektoen Enteric Agar with rifampicin; HE + rif) or most probable number (lactose broth with rifampicin; HE + rif) methods. Generic E. coli and Salmonella spp. on onions decreased 0.19-0.26 log CFU/g·d during the initial 12 days of finishing. At lifting, generic E. coli and Salmonella spp. had been reduced to <1 CFU/g and persisted through the end of curing. This study demonstrates conventional curing practices as an effective mitigation strategy for dry bulb onions produced with water of poor microbiological quality.
Assuntos
Irrigação Agrícola/métodos , Escherichia coli O157/crescimento & desenvolvimento , Cebolas/microbiologia , Salmonella/crescimento & desenvolvimento , Inocuidade dos Alimentos , Cebolas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poluição da Água/análiseRESUMO
The concept of local food is rapidly gaining importance within the United States. The foundation of local food is terroir, which links a food to its production environment. The purpose of this study was to investigate evidence of terroir in milk sourcing and its influence on Cheddar cheese flavor. Specifically, the study was designed to assess if consumers could differentiate between Cheddar cheeses made with milk from different dairy farms. Milk from 5 locations, including single dairy farms and commingled sites, was collected from around the state of Oregon. Using raw and pasteurized counterparts of the milk, Cheddar cheese was made and aged. At 5 and 9mo into aging, Cheddar cheese consumers were asked to group the samples based on perceived similarity/dissimilarity of cheese flavor. Grouping data were subjected to multidimensional scaling and subsequent cluster analysis. Results at 5mo into aging revealed that cheeses made by milk originating from different farms (80km apart) within the same region were perceived as different, whereas cheeses made with milk from neighboring farms (5km apart) were grouped together, irrespective of heat treatment (i.e., raw vs. pasteurized). Cheeses made with commingled milk from different regions grouped together. At 9mo of aging, in contrast, a clear separation of perceived flavor was present between the pasteurized and raw cheese samples, whereas the effect of milk sourcing was less pronounced. These data suggest that the geographical location of the milk source has an effect on the flavor of Cheddar cheese, but that the practices of milk commingling and heat treatment likely reduce the effect of geographical location, particularly as cheese ages.
Assuntos
Queijo/análise , Manipulação de Alimentos , Qualidade dos Alimentos , Leite/química , Percepção Gustatória , Animais , Humanos , Oregon , PasteurizaçãoRESUMO
Hauling is a critical part of the commercial milk supply chain, yet very few studies have aimed to understand its effect on raw milk quality. This study focused on the effect of extended-duration tanker use during hauling on raw milk quality at a commercial facility. Standard tanker use [cleaned-in-place (CIP) once per 24h] served as a control and an incremental between-load water rinse with sanitizer treatment (RS) was evaluated to mitigate any effect from extended duration hauling. During this study, 1 commercial truck with 2 trailers was monitored for 10d. The truck collected milk at a large dairy farm, transported the milk to a manufacturing facility, and then returned to the same farm for a second load. Each round-trip journey took between 10 and 12h, allowing for 2 loads per 24-h use period. Following the second delivery, the truck was cleaned by CIP treatment starting a new treatment day. Producer samples were collected from the raw milk bulk tank on the farm before loading milk into the tanker. The same milk was sampled directly out of the tanker truck before unloading at the manufacturer. Effect on individual bacteria count, thermophilic spore count, and preliminary incubation count was quantified through common industry tests. Surface sponge swabs were also used to monitor tanker sanitation and the efficacy of cleaning treatments. Results did not identify a negative effect on raw milk quality due to extended duration hauling. Whereas the addition of RS did not provide any measurable quality benefits for the microbial milk quality, swab results demonstrated that the RS treatment was able to reduce surface bacteria in the tanker, although not to the same level as the full CIP treatment. Based on this study, current CIP practices for long distance milk hauling appear to be effective in mitigating any measurable effect on raw milk quality.
Assuntos
Contaminação de Alimentos/análise , Qualidade dos Alimentos , Leite/microbiologia , Animais , Carga Bacteriana , Microbiologia de Alimentos , Leite/química , Meios de TransporteRESUMO
Consolidation of the US milk industry has led to use of tankers for up to 24 h in between thorough cleanings. As the heavy use of tankers has not been previously studied, the effect of this form of hauling on raw milk quality is unknown. This study focused on the effect of frequent tanker use during hauling on raw milk quality at a commercial facility. Standard tanker use (cleaned-in-place once per 24 h) served as our control and incremental cleaning treatments (water rinse after each load, water rinse after each load with a sanitizer treatment after 12 h, and 12 h of sanitizer treatment) were added to the study to understand if any effect could be mitigated by more frequent cleaning. Producer samples were collected from the farm before loading milk into the tanker as well as sampling the same milk directly out of the tanker truck before unloading at the manufacturer. The study was repeated at 2 different dairy manufacturing facilities, once during the summer and once during the winter. Milk quality was quantified through industry-relevant microbiological tests: individual bacteria count, thermophilic spore count, and preliminary incubation count. Within the study we defined a negative effect on milk quality as a statistically significant difference between the tanker and producer samples in any of the 3 microbial tests conducted between treatments. Results from the study showed no clear effect due to hauling in individual bacteria count, thermophilic spore count, or preliminary incubation counts. There was also no difference in milk quality between the 2 plants, suggesting that neither season nor location affected our results in the standard use variable. As we did not see a negative effect on milk quality in the standard use variable, the addition of cleaning treatments did not appear to provide any clear benefit. Tanker surface swabs and ATP swabs were also used to monitor tanker sanitation and the efficacy of cleaning treatments. Both surface and ATP swabs revealed differences between cleaning efficacy at the 2 facilities. Although the differences in efficacy did not influence tanker milk quality within our study, variability in sanitation may provide a source of contamination that could negatively affect raw milk quality in other areas. Based on this study, current hauling practices appear to be effective in mitigating any measurable effect on raw milk quality; however, further investigation is needed before making industry-wide recommendations.
Assuntos
Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Leite/microbiologia , Meios de Transporte/métodos , Animais , Carga Bacteriana , Noroeste dos Estados Unidos , Estações do AnoRESUMO
Beverage innovation is a growing trend with a reliance on comanufacturing relationships to launch products quickly. A recent comanufacturing relationship is the utilization of dairy processing facilities to process plant-based beverages using high-temperature short-time (HTST) pasteurization. While the shelflife of HTST bovine milk is well established at 21 days, retailers are expecting new refrigerated beverages to achieve a 60-day shelflife. Little is known about the microbial stability of these new beverages, particularly those with complex formulations. Our objective was to identify bacterial taxa leading to the spoilage of four coconut-based creamers and their potential sources (raw ingredients or packaging). We used a multifaceted approach including plate counting and 16S rRNA metabarcoding to monitor microbial growth in products throughout shelflife (60 d, 4 °C), and cold enrichment (7 °C, 11 d) of ingredients and packaging. Nearly all product units (25/26) had elevated microbial loads (>4.3 log CFU/mL) prior to the 60-d target, with early spoilage detected at 21 d. Key spoilage taxa included Pseudomonas, Streptococcus, Aerococcus, Paenibacillus, Sphingomonas, and Oceanobacillus. Pseudomonas were responsible for "early" product spoilage (21-32 d), whereas Oceanobacillus were important in products with very "late" spoilage (60-62 d). All key spoilage taxa were identified in cold enrichments of multiple units of waxboard cartons. Paenibacillus was the dominant bacterium in 47% (10/21) of product units. In addition to carton samples, Paenibacillus was also identified in one raw ingredient (mushroom extract). Metabarcoding identified Listeria sensu stricto as a dominant taxon in three individual product units from three distinct production lots. Listeria was also found in 31% (5/16) of cold enrichments of individual cartons. Taxa responsible for spoilage of plant-based beverages were identified as well as demonstrating packaging as an important contamination source.
Assuntos
Bactérias , Cocos , Contaminação de Alimentos , Microbiologia de Alimentos , Cocos/microbiologia , Bactérias/classificação , Contaminação de Alimentos/análise , Contagem de Colônia Microbiana , Animais , Bebidas/microbiologia , Bovinos , Embalagem de Alimentos/métodosRESUMO
Holder pasteurization (HoP) enhances donor human milk microbiological safety but damages many bioactive milk proteins. Though ultraviolet-C irradiation (UV-C) can enhance safety while better preserving some milk proteins, it has not been optimized for dose or effect on a larger array of bioactive proteins. We determined the minimal UV-C parameters that provide >5-log reductions of relevant bacteria in human milk and how these treatments affect an array of bioactive proteins, vitamin E, and lipid oxidation. Treatment at 6000 and 12â¯000 J/L of UV-C resulted in >5-log reductions of all vegetative bacteria and bacterial spores, respectively. Both dosages improved retention of immunoglobulin A (IgA), IgG, IgM, lactoferrin, cathepsin D, and elastase and activities of bile-salt-stimulated lipase and lysozyme compared with HoP. These UV-C doses caused minor reductions in α-tocopherol but not γ-tocopherol and no increases in lipid oxidation products. UV-C treatment is a promising approach for donor human milk processing.
Assuntos
Bactérias , Leite Humano , Pasteurização , Raios Ultravioleta , Humanos , Leite Humano/química , Leite Humano/efeitos da radiação , Pasteurização/métodos , Bactérias/efeitos da radiação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Proteínas do Leite/química , Irradiação de Alimentos/métodos , Lipídeos/química , Vitaminas/análise , Vitamina E/farmacologiaRESUMO
Two U.S. outbreaks of salmonellosis in 2020 and 2021 were epidemiologically linked to red onions. The 2020 outbreak investigation implicated the production of agricultural water as a likely contamination source. Field trials were designed to investigate the prevalence and survival of Escherichia coli (surrogate for Salmonella) on dry bulb onions after the application of contaminated irrigation water at the end of the growing period. Irrigation water was inoculated at 3 log most probable number (MPN)/100 mL (2022 and 2023) or 5 log MPN/100 mL (2023, drip only) with a cocktail of rifampin-resistant E. coli and applied with the final irrigation (0.4 acre-inch/0.4 ha-cm) to onions. Onion bulbs (40 or 80) were sampled immediately after irrigation and throughout field curing (4 weeks) and E. coli was enumerated using an MPN method. For drip irrigation, at 3 log MPN/100 mL E. coli was detected on 13% of onions at 24 h but not detected at 0 h; at 5 log MPN/100 mL for drip irrigation applied to saturated soil, E. coli was detected in 63% of onions at 0 h. Prevalence significantly (P < 0.05), decreased after 7 d of curing with cell densities of 1-1,400 MPN/onion. At the end of field curing in 2023, 1/80 of onions had detectable E. coli (2.04 MPN/onion). E. coli was detected in a significantly smaller percentage of onions (2022: 13%; 2023: 68%) after a contaminated drip irrigation event compared to overhead irrigation (98-100%; P < 0.05). After overhead irrigation, E. coli was detected in onions (1-1,000 MPN/onion) on day 0. Prevalence decreased significantly (P < 0.05) after 7 d of field curing in both years (2022: 15%; 2023: 7%). E. coli was not detected on Calibra onions (80/year) at the end of field curing in either year but was detected at <12 MPN/onion in 2.5-3.75% of onions (n = 80) for other cultivars. These data confirm limited contamination risk associated with drip irrigation water quality and begin to quantify contamination risks associated with overhead irrigation of dry bulb onions.