Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(7): e23017, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272890

RESUMO

Cell-to-cell spreading of misfolded α-synuclein (αSYN) is supposed to play a key role in the pathological progression of Parkinson's disease (PD) and other synucleinopathies. Receptor-mediated endocytosis has been shown to contributes to the uptake of αSYN in both neuronal and glial cells. To determine the receptor involved in αSYN endocytosis on the cell surface, we performed unbiased, and comprehensive screening using a membrane protein library of the mouse whole brain combined with affinity chromatography and mass spectrometry. The candidate molecules hit in the initial screening were validated by co-immunoprecipitation using cultured cells; sortilin, a vacuolar protein sorting 10 protein family sorting receptor, exhibited the strongest binding to αSYN fibrils. Notably, the intracellular uptake of fibrillar αSYN was slightly but significantly altered, depending on the expression level of sortilin on the cell surface, and time-lapse image analyses revealed the concomitant internalization and endosomal sorting of αSYN fibrils and sortilin. Domain deletion in the extracellular portion of sortilin revealed that the ten conserved cysteines (10CC) segment of sortilin was involved in the binding and endocytosis of fibrillar αSYN; importantly, pretreatment with a 10CC domain-specific antibody significantly hindered αSYN fibril uptake. The presence of sortilin in the core structure of Lewy bodies and glial cytoplasmic inclusions in the brain of synucleinopathy patients was confirmed via immunohistochemistry, and the expression level of sortilin in mesencephalic dopaminergic neurons may be altered with disease progression. These results provide compelling evidence that sortilin acts as an endocytic receptor for pathogenic form of αSYN, and yields important insight for the development of disease-modifying targets for synucleinopathies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Proteínas de Transporte , Doença de Parkinson/metabolismo
2.
PLoS Genet ; 16(4): e1008693, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324833

RESUMO

Amino acids exert many biological functions, serving as allosteric regulators and neurotransmitters, as constituents in proteins and as nutrients. GCN2-mediated phosphorylation of eukaryotic initiation factor 2 alpha (elF2α) restores homeostasis in response to amino acid starvation (AAS) through the inhibition of the general translation and upregulation of amino acid biosynthetic enzymes and transporters by activating the translation of Gcn4 and ATF4 in yeast and mammals, respectively. GCN1 is a GCN2-binding protein that possesses an RWD binding domain (RWDBD) in its C-terminus. In yeast, Gcn1 is essential for Gcn2 activation by AAS; however, the roles of GCN1 in mammals need to be established. Here, we revealed a novel role of GCN1 that does not depend on AAS by generating two Gcn1 mutant mouse lines: Gcn1-knockout mice (Gcn1 KO mice (Gcn1-/-)) and RWDBD-deleted mutant mice (Gcn1ΔRWDBD mice). Both mutant mice showed growth retardation, which was not observed in the Gcn2 KO mice, such that the Gcn1 KO mice died at the intermediate stage of embryonic development because of severe growth retardation, while the Gcn1ΔRWDBD embryos showed mild growth retardation and died soon after birth, most likely due to respiratory failure. Extension of pregnancy by 24 h through the administration of progesterone to the pregnant mothers rescued the expression of differentiation markers in the lungs and prevented lethality of the Gcn1ΔRWDBD pups, indicating that perinatal lethality of the Gcn1ΔRWDBD embryos was due to simple growth retardation. Similar to the yeast Gcn2/Gcn1 system, AAS- or UV irradiation-induced elF2α phosphorylation was diminished in the Gcn1ΔRWDBD mouse embryonic fibroblasts (MEFs), suggesting that GCN1 RWDBD is responsible for GCN2 activity. In addition, we found reduced cell proliferation and G2/M arrest accompanying a decrease in Cdk1 and Cyclin B1 in the Gcn1ΔRWDBD MEFs. Our results demonstrated, for the first time, that GCN1 is essential for both GCN2-dependent stress response and GCN2-independent cell cycle regulation.


Assuntos
Ciclo Celular , Proliferação de Células , Desenvolvimento Fetal , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Transativadores/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Células Cultivadas , Ciclina B1/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Transativadores/genética
3.
Biochem Biophys Res Commun ; 623: 170-175, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921708

RESUMO

Dysregulation of autophagy, one of the major processes through which abnormal proteins are degraded, is a cardinal feature of synucleinopathies, including Lewy body diseases [Parkinson's disease (PD) and dementia with Lewy bodies (DLB)] and multiple system atrophy (MSA), which are characterized by the presence of abnormal α-synuclein in neurons and glial cells. Although several research groups have reported that Rubicon family proteins can regulate autophagosome-lysosome fusion or positioning, little is known about their involvement in synucleinopathies. In the present study, by studying patients with PD (N = 8), DLB (N = 13), and MSA (N = 5) and controls (N = 16), we explored the involvement of Rubicon family proteins [Rubicon, Pacer and differentially expressed in FDCP8 (DEF8)] in synucleinopathies. Immunohistochemical analysis showed that not only brainstem-type Lewy bodies but also cortical Lewy bodies were immunoreactive for DEF8 in Lewy body diseases, whereas Rubicon and Pacer were detectable in only a few brainstem-type Lewy bodies in PD. Glial cytoplasmic inclusions in patients with MSA were not immunoreactive for Rubicon, Pacer or DEF8. Immunoblotting showed significantly increased protein levels of DEF8 in the substantia nigra and putamen of patients with PD and the temporal cortex of patients with DLB. In addition, the smear band of DEF8 appeared in the insoluble fraction where that of phosphorylated α-synuclein was detected. These findings indicate the involvement of DEF8 in the formation of Lewy bodies. Quantitative and qualitative alterations in DEF8 may reflect the dysregulation of autophagy in Lewy body diseases.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Autofagia , Encéfalo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
4.
Neuropathol Appl Neurobiol ; 48(7): e12844, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35906771

RESUMO

AIMS: Synaptic dysfunction in Parkinson's disease is caused by propagation of pathogenic α-synuclein between neurons. Previously, in multiple system atrophy (MSA), pathologically characterised by ectopic deposition of abnormal α-synuclein predominantly in oligodendrocytes, we demonstrated that the occurrence of memory impairment was associated with the number of α-synuclein-positive neuronal cytoplasmic inclusions (NCIs) in the hippocampus. In the present study, we aimed to investigate how abnormal α-synuclein in the hippocampus can lead to memory impairment. METHODS: We performed pathological and biochemical analyses using a mouse model of adult-onset MSA and human cases (MSA, N = 25; Parkinson's disease, N = 3; Alzheimer's disease, N = 2; normal controls, N = 11). In addition, the MSA model mice were examined behaviourally and physiologically. RESULTS: In the MSA model, inducible human α-synuclein was first expressed in oligodendrocytes and subsequently accumulated in the cytoplasm of excitatory hippocampal neurons (NCI-like structures) and their presynaptic nerve terminals with the development of memory impairment. α-Synuclein oligomers increased simultaneously in the hippocampus of the MSA model. Hippocampal dendritic spines also decreased in number, followed by suppression of long-term potentiation. Consistent with these findings obtained in the MSA model, post-mortem analysis of human MSA brain tissues showed that cases of MSA with memory impairment developed more NCIs in excitatory hippocampal neurons along with α-synuclein oligomers than those without. CONCLUSIONS: Our results provide new insights into the role of α-synuclein oligomers as a possible pathological cause of memory impairment in MSA.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Doença de Parkinson/patologia , Corpos de Inclusão/patologia , Neurônios/patologia , Encéfalo/patologia
5.
Cerebellum ; 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474048

RESUMO

Multiple system atrophy (MSA) is a fatal disease characterized pathologically by the widespread occurrence of aggregated α-synuclein in the oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). α-Synuclein aggregates are also found in the oligodendroglial nuclei and neuronal cytoplasm and nuclei. It is uncertain whether the primary source of α-synuclein in GCIs is originated from neurons or oligodendrocytes. Accumulating evidence suggests that there are two degenerative processes in this disease. One possibility is that numerous GCIs are associated with the impairment of oligo-myelin-axon-neuron complex, and the other is that neuronal inclusion pathology is also a primary event from the early stage. Both oligodendrocytes and neurons may be primarily affected in MSA, and the damage of one cell type contributes to the degeneration of the other. Vesicle-mediated transport plays a key role in the nuclear translocation of α-synuclein as well as in the formation of glial and neuronal α-synuclein inclusions. Recent studies have shown that impairment of autophagy can occur along with or as a result of α-synuclein accumulation in the brain of MSA and Lewy body disease. Activated autophagy may be implicated in the therapeutic approach for α-synucleinopathies.

6.
BMC Neurol ; 22(1): 485, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522715

RESUMO

BACKGROUND: Neurological symptoms and radiographic abnormalities may remain in a small proportion of patients with metronidazole-induced encephalopathy (MIE). Although experimental animal models of MIE have suggested a Wernicke's encephalopathy-like pathology, little is known about the histopathological features of MIE. Here we report the first autopsy case of irreversible MIE. CASE PRESENTATION: A 72-year-old Japanese woman with pancreatic neuroendocrine tumour and metastatic tumours in the liver developed intraabdominal bleeding from a hepatic abscess. She was administered metronidazole for 79 days (1.5 g/day), which caused dysarthria followed by hand tremor and altered mental status. Brain magnetic resonance imaging at the time of onset revealed hyperintensities in the deep white matter of the bilateral parietal lobes and splenium of the corpus callosum on diffusion-weighted imaging (DWI) with reduced apparent diffusion coefficient (ADC) values. Despite the improvement of dysarthria and hand tremor, her cognition remained affected even after the withdrawal of metronidazole. She died of pancreatic neuroendocrine tumour at the age of 74 years. Histopathological examinations of the brain confirmed a combination of severe demyelination and moderate axonal degeneration, which corresponded to the regions showing abnormal signal intensities on DWI with reduced ADC values. There were no pathological findings suggestive of Wernicke's encephalopathy in the brain. CONCLUSION: We have demonstrated the clinical, radiographic and histopathological aspects of irreversible MIE. Hyperintensities on DWI with reduced ADC values in affected regions may indicate a poor clinical prognosis due to irreversible pathological damage.


Assuntos
Encefalopatias , Neoplasias Pancreáticas , Encefalopatia de Wernicke , Feminino , Humanos , Metronidazol/efeitos adversos , Encefalopatia de Wernicke/patologia , Disartria , Autopsia , Tremor , Encefalopatias/induzido quimicamente , Encefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos
7.
Brain ; 144(4): 1138-1151, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33822892

RESUMO

We studied a subset of patients with autopsy-confirmed multiple system atrophy who presented a clinical picture that closely resembled either Parkinson's disease or progressive supranuclear palsy. These mimics are not captured by the current diagnostic criteria for multiple system atrophy. Among 218 autopsy-proven multiple system atrophy cases reviewed, 177 (81.2%) were clinically diagnosed and pathologically confirmed as multiple system atrophy (i.e. typical cases), while the remaining 41 (18.8%) had received an alternative clinical diagnosis, including Parkinson's disease (i.e. Parkinson's disease mimics; n = 16) and progressive supranuclear palsy (i.e. progressive supranuclear palsy mimics; n = 17). We also reviewed the clinical records of another 105 patients with pathologically confirmed Parkinson's disease or progressive supranuclear palsy, who had received a correct final clinical diagnosis (i.e. Parkinson's disease, n = 35; progressive supranuclear palsy-Richardson syndrome, n = 35; and progressive supranuclear palsy-parkinsonism, n = 35). We investigated 12 red flag features that would support a diagnosis of multiple system atrophy according to the current diagnostic criteria. Compared with typical multiple system atrophy, Parkinson's disease mimics more frequently had a good levodopa response and visual hallucinations. Vertical gaze palsy and apraxia of eyelid opening were more commonly observed in progressive supranuclear palsy mimics. Multiple logistic regression analysis revealed an increased likelihood of having multiple system atrophy [Parkinson's disease mimic versus typical Parkinson's disease, odds ratio (OR): 8.1; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 2.3] if a patient developed any one of seven selected red flag features in the first 10 years of disease. Severe autonomic dysfunction (orthostatic hypotension and/or urinary incontinence with the need for a urinary catheter) was more frequent in clinically atypical multiple system atrophy than other parkinsonian disorders (Parkinson's disease mimic versus typical Parkinson's disease, OR: 4.1; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 8.8). The atypical multiple system atrophy cases more frequently had autonomic dysfunction within 3 years of symptom onset than the pathologically confirmed patients with Parkinson's disease or progressive supranuclear palsy (Parkinson's disease mimic versus typical Parkinson's disease, OR: 4.7; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 2.7). Using all included clinical features and 21 early clinical features within 3 years of symptom onset, we developed decision tree algorithms with combinations of clinical pointers to differentiate clinically atypical cases of multiple system atrophy from Parkinson's disease or progressive supranuclear palsy.


Assuntos
Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Paralisia Supranuclear Progressiva/patologia
8.
Neuropathology ; 42(3): 204-211, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35274390

RESUMO

In typical adult neuronal intranuclear inclusion disease (NIID) with predilection for the basal ganglia or cerebral cortex, not only neurons but also glial cells harbor intranuclear inclusions. In addition, these inclusions are present in the peripheral autonomic nervous system, visceral organs and skin. In NIID cases with an expansion of GGC repeats in the 5'-untranslated region (5'-UTR) of the Notch 2 N-terminal like C (NOTCH2NLC) gene, these repeats are located in an upstream open reading frame (uN2C) and result in the production of a polyglycine-containing protein called uN2CpolyG. Typically, patients with adult NIID show high-intensity signals at the corticomedullary junction on diffusion-weighted brain magnetic resonance imaging. We report a case of adult NIID in a 78-year-old Japanese male, who suffered from mild, non-progressive tremor during life but showed no radiographic abnormalities suggestive of adult NIID. Pathologically, ubiquitin-, p62- and uN2CpolyG-positive neuronal intranuclear inclusions were particularly frequent in the hippocampal formation, but were also seen in the enteric plexuses, kidney and cardiac muscles. By contrast, glial intranuclear inclusions were barely evident in the affected regions. The present case also had an immunohistochemical profile differing from that of typical adult NIID. The findings in this case suggest that adult NIID can show clinical, radiographic and pathological heterogeneity.


Assuntos
Corpos de Inclusão Intranuclear , Doenças Neurodegenerativas , Adulto , Idoso , Encéfalo/patologia , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Masculino , Doenças Neurodegenerativas/metabolismo , Neuropatologia
9.
Neuropathology ; 42(6): 488-504, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35701899

RESUMO

The formation of misfolded protein aggregates is one of the pathological hallmarks of neurodegenerative diseases. We have previously demonstrated the cytoplasmic aggregate formation of adenovirally expressed transactivation response DNA-binding protein of 43 kDa (TDP-43), the main constituent of neuronal cytoplasmic aggregates in cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), in cultured neuronal cells under the condition of proteasome inhibition. The TDP-43 aggregate formation was markedly suppressed by co-infection of adenoviruses expressing heat shock transcription factor 1 (HSF1), a master regulator of heat shock response, and Praja1 RING-finger E3 ubiquitin ligase (PJA1) located downstream of the HSF1 pathway. In the present study, we examined other reportedly known E3 ubiquitin ligases for TDP-43, i.e. Parkin, RNF112 and RNF220, but failed to find their suppressive effects on neuronal cytoplasmic TDP-43 aggregate formation, although they all bind to TDP-43 as verified by co-immunoprecipitation. In contrast, PJA1 also binds to adenovirally expressed wild-type and mutated fused in sarcoma, superoxide dismutase 1, α-synuclein and ataxin-3, and huntingtin polyglutamine proteins in neuronal cultures and suppressed the aggregate formation of these proteins. These results suggest that PJA1 is a common sensing factor for aggregate-prone proteins to counteract their aggregation propensity, and could be a potential therapeutic target for neurodegenerative diseases that include ALS, FTLD, Parkinson's disease and polyglutamine diseases.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Ubiquitina-Proteína Ligases , Esclerose Lateral Amiotrófica/patologia , Degeneração Lobar Frontotemporal/patologia , Fatores de Transcrição de Choque Térmico , Agregados Proteicos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais
10.
Neuropathology ; 42(4): 329-338, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35775096

RESUMO

We report the case of a Japanese woman with sporadic amyotrophic lateral sclerosis (ALS) of 28 months' duration who died at the age of 66 years. Postmortem examination revealed moderate loss of neurons and phosphorylated TDP-43 (p-TDP-43)-immunoreactive neuronal and glial cytoplasmic inclusions in the upper and lower motor neurons. Additionally, marked neuronal loss was observed in the neostriatum, globus pallidum, subthalamic nucleus, and substantia nigra. p-TDP-43-immunoreactive inclusions were frequently found in these areas. Neuronal loss and TDP-43 pathology in the motor, striatonigral, and pallidoluysian systems were predominant on the right side. Moreover, p-TDP-43-immunoreactive cat's-eye-shaped neuronal nuclear inclusions (NNIs) were observed in the affected lesions. NNIs in the striatonigral system were also positive for valosin-containing protein (VCP). We diagnosed the patient as having ALS with striatonigral and pallidoluysian degeneration. Patients with ALS rarely experience pallido-nigro-luysian degeneration. To our best knowledge, only one case of ALS combined with striatonigral and pallidoluysian degeneration has been reported. Neuronal loss in the striatonigral and/or pallidoluysian systems has also been reported in patients with ALS with multisystem degeneration accompanied by long-term use of an artificial respirator. Based on these findings, a possibility of an extremely rare subtype of ALS demonstrating selective loss of neurons in the striatonigral and pallidoluysian systems exists; another possibility is that this type could be an early stage or forme fruste of ALS with multisystem degeneration. Although VCP-positive cat's-eye-shaped NNIs have been reported in spinocerebellar ataxia type-2 cases, our case report presents VCP-positive NNIs in a patient with ALS for the first time.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/patologia , Autopsia , Proteínas de Ligação a DNA/metabolismo , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Neurônios Motores/patologia
11.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955572

RESUMO

Sulforaphane (SFN) is a potent activator of the transcriptional factor, Nuclear Factor Erythroid 2 (NF-E2)-Related factor 2 (NRF2). SFN and its precursor, glucoraphanin (sulforaphane glucosinolate, SGS), have been shown to ameliorate cognitive function in clinical trials and in vivo studies. However, the effects of SGS on age-related cognitive decline in Senescence-Accelerated Mouse Prone 8 (SAMP8) is unknown. In this study, we determined the preventive potential of SGS on age-related cognitive decline. One-month old SAMP8 mice or control SAM resistance 1 (SAMR1) mice were fed an ad libitum diet with or without SGS-containing broccoli sprout powder (0.3% w/w SGS in diet) until 13 months of age. SGS significantly improved long-term memory in SAMP8 at 12 months of age. Interestingly, SGS increased hippocampal mRNA and protein levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) and mitochondrial transcription factor A (TFAM), which are master regulators of mitochondrial biogenesis, both in SAMR1 and SAMP8 at 13 months of age. Furthermore, mRNAs for nuclear respiratory factor-1 (NRF-1) and mitochondrial DNA-encoded respiratory complex enzymes, but not mitochondrial DNA itself, were increased by SGS in SAMP8 mice. These results suggest that SGS prevents age-related cognitive decline by maintaining mitochondrial function in senescence-accelerated mice.


Assuntos
Disfunção Cognitiva , Biogênese de Organelas , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , DNA/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Isotiocianatos , Camundongos , Sulfóxidos
12.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328622

RESUMO

GCN1 is an evolutionarily-conserved ribosome-binding protein that mediates the amino acid starvation response as well as the ribotoxic stress response. We previously demonstrated that Gcn1 mutant mice lacking the GCN2-binding domain suffer from growth retardation and postnatal lethality via GCN2-independent mechanisms, while Gcn1-null mice die early in embryonic development. In this study, we explored the role of GCN1 in adult mice by generating tamoxifen-inducible conditional knockout (CKO) mice. Unexpectedly, the Gcn1 CKO mice showed body weight loss during tamoxifen treatment, which gradually recovered following its cessation. They also showed decreases in liver weight, hepatic glycogen and lipid contents, blood glucose and non-esterified fatty acids, and visceral white adipose tissue weight with no changes in food intake and viability. A decrease of serum VLDL suggested that hepatic lipid supply to the peripheral tissues was primarily impaired. Liver proteomic analysis revealed the downregulation of mitochondrial ß-oxidation that accompanied increases of peroxisomal ß-oxidation and aerobic glucose catabolism that maintain ATP levels. These findings show the involvement of GCN1 in hepatic lipid metabolism during tamoxifen treatment in adult mice.


Assuntos
Proteínas de Saccharomyces cerevisiae , Animais , Lipídeos , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Camundongos , Camundongos Knockout , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases , Proteômica , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tamoxifeno/efeitos adversos , Tamoxifeno/metabolismo , Transativadores/metabolismo , Redução de Peso
13.
Biochem Biophys Res Commun ; 537: 85-92, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33387887

RESUMO

Transactive response DNA-binding protein of 43 kDa (TDP-43) abnormally forms aggregates in certain subtypes of frontotemporal lobar degeneration (FTLD) and in amyotrophic lateral sclerosis (ALS). The pathological forms of TDP-43 have reported to be associated with poly(ADP-ribose) (PAR), which regulates the properties of these aggregates. A recent study has indicated that tankyrase, a member of the PAR polymerase (PARP) family, regulates pathological TDP-43 formation under conditions of stress, and tankyrase inhibitors suppress TDP-43 aggregate formation and cytotoxicity. Since we reported the development of tankyrase inhibitors that are more specific than conventional inhibitors, in this study, we examined their effects on the formation of TDP-43 aggregates in cultured cells. Time-lapse imaging showed that TDP-43 aggregates appeared in the nucleus within 30 min of treatment with sodium arsenite. Several tankyrase inhibitors suppressed the formation of aggregates and decreased the levels of the tankyrase protein. Immunohistochemical studies demonstrated that tankyrase was localized to neuronal cytoplasmic inclusions in the spinal cords of patients with ALS. Moreover, the tankyrase protein levels were significantly higher in the brains of patients with FTLD than in the brains of control subjects. These findings suggest that the inhibition of tankyrase activity protects against TDP-43 toxicity. Tankyrase inhibitors may be a potential treatment to suppress the progression of TDP-43 proteinopathies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Agregados Proteicos , Tanquirases/antagonistas & inibidores , Arsenitos/toxicidade , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Poli Adenosina Difosfato Ribose/toxicidade , Agregados Proteicos/efeitos dos fármacos , Proteinopatias TDP-43/patologia , Tanquirases/metabolismo
14.
Neuropathology ; 41(3): 243-249, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33973283

RESUMO

Leptomeningeal myelomatosis (LMM) is a fatal complication that occurs in < 1% of patients with multiple myeloma. Many patients with LMM present with neurologic symptoms referable to cranial neuropathies, while the manifestation of communicating hydrocephalus has been underrecognized. A Japanese man with Bence Jones protein-κ multiple myeloma developed fever and headache at age 54 years. He then became somnolent and went into a coma. Neuroimaging analyses identified rapidly progressive communicating hydrocephalus due to meningitis. He died 83 days after the onset of headache without any response to treatment at age 55 years. No symptoms or signs associated with cranial nerves were found during the course of illness. Postmortem examination revealed hydrocephalus and diffuse infiltration of myeloma cells into the subarachnoid space of the cerebrum, cerebellum, and brainstem. In addition, the interstitial tissue of the choroid plexuses was filled with myeloma cells. These myeloma cells were positive for CD156 and light chain κ. The Ki-67 labeling index in myeloma cells of the central nervous system (CNS) was 30-40%. Histopathological examination further revealed many myeloma cells on the surface of the lateral, third and fourth ventricles and at the area postrema of the medulla oblongata. Patients with LMM can develop an aggressive form of communicating hydrocephalus. Given that cerebrospinal fluid, produced by epithelial cells in the choroid plexuses of the ventricles, passes into the subarachnoid space through the third and fourth ventricles, myeloma cells may invade the CNS through the choroid plexuses.


Assuntos
Hidrocefalia , Mieloma Múltiplo/complicações , Mieloma Múltiplo/patologia , Autopsia , Proteína de Bence Jones/urina , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/etiologia , Hidrocefalia/patologia , Masculino , Neoplasias Meníngeas , Meninges/patologia , Pessoa de Meia-Idade , Neuroimagem
15.
Neurobiol Dis ; 143: 104979, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590036

RESUMO

Levo-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease; however, most patients develop uncontrollable abnormal involuntary movements known as L-DOPA-induced dyskinesia. L-DOPA-induced dyskinesia can be reduced by pallidotomy of the medial globus pallidus or pallidal deep brain stimulation, suggesting that the medial globus pallidus plays a significant role in the development of L-DOPA-induced dyskinesia. In the present study, the pathological changes of the medial globus pallidus in L-DOPA-induced dyskinesia were studied in rat models of Parkinson's disease (unilateral 6-hydroxydopamine lesioning) and L-DOPA-induced dyskinesia (L-DOPA injection in Parkinson's disease-model rats twice daily for 2 weeks, confirmed by display of dyskinesia-like abnormal involuntary movements). L-DOPA-induced dyskinesia-model rats displayed medial globus pallidus hypertrophy, enlarged axon terminals surrounding the dendrites of medial globus pallidus neurons, and increased density of synaptic vesicles in enlarged axon terminals on the lesioned side. Synaptic terminal enlargement reversed after discontinuation of L-DOPA. Histological studies revealed the enlarged synaptic terminals were those of GABAergic striatal (direct pathway) neurons. A single injection of L-DOPA enhanced GABA release in the medial globus pallidus on the lesioned side in L-DOPA-induced dyskinesia-model rats compared to Parkinson's disease-model rats. In addition, microinjection of muscimol, a GABAA receptor agonist, into the medial globus pallidus on the lesioned side of Parkinson's disease-model rats induced dyskinesia-like abnormal involuntary movements. Microinjection of bicuculline, a GABAA receptor antagonist, into the medial globus pallidus on the lesioned side alleviated L-DOPA-induced dyskinesia in Parkinson's disease-model rats that had received L-DOPA prior to the microinjection. These results indicate that priming for L-DOPA-induced dyskinesia comprises excessive GABA storage in axon terminals of the direct pathway and that expression of L-DOPA-induced dyskinesia is associated with enhanced GABA release into the medial globus pallidus after L-DOPA dosing and the resultant excessive stimulation of GABAA receptors.


Assuntos
Antiparkinsonianos/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Globo Pálido/metabolismo , Levodopa/toxicidade , Transtornos Parkinsonianos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Globo Pálido/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos
16.
FASEB J ; 33(9): 10240-10256, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211923

RESUMO

The neuropathological hallmarks of Parkinson's disease (PD) include the appearance of α-synuclein (α-SYN)-positive Lewy bodies (LBs) and the loss of catecholaminergic neurons. Thus, a potential mechanism promoting the uptake of extracellular α-SYN may exist in susceptible neurons. Of the various differentially expressed proteins, we are interested in flotillin (FLOT)-1 because this protein is highly expressed in the brainstem catecholaminergic neurons and is strikingly up-regulated in PD brains. In this study, we found that extracellular monomeric and fibrillar α-SYN can potentiate FLOT1-dopamine transporter (DAT) binding and pre-endocytic clustering of DAT on the cell surface, thereby facilitating DAT endocytosis and down-regulating its transporter activity. Moreover, we demonstrated that α-SYN itself exploited the DAT endocytic process to enter dopaminergic neuron-like cells, and both FLOT1 and DAT were found to be the components of LBs. Altogether, these findings revealed a novel role of extracellular α-SYN on cellular trafficking of DAT and may provide a rationale for the cell type-specific, functional, and pathologic alterations in PD.-Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T., Fujimori, K., Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M., Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Kanzaki, M., Wakabayashi, K., Okano, H., Aoki, M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Corpos de Lewy/patologia , Proteínas de Membrana/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Endocitose , Humanos , Corpos de Lewy/metabolismo , Proteínas de Membrana/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transporte Proteico , alfa-Sinucleína/genética
17.
Neuropathology ; 40(5): 415-425, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32750743

RESUMO

In Parkinson's disease (PD), neuronal alpha-synuclein aggregates are distributed throughout the nervous system, including the brain, spinal cord, sympathetic ganglia, submandibular gland, enteric nervous system, cardiac and pelvic plexuses, adrenal medulla, and skin. Thus, PD is a progressive multiorgan disease clinically associated with various motor and nonmotor symptoms. The earliest PD-related lesions appear to develop in the olfactory bulb, dorsal vagal nucleus, and possibly also the peripheral autonomic nervous system. The brain is closely connected with the enteric nervous system via axons of the efferent fibers of the dorsal nucleus of vagal nerve. Anatomical connections also exist between the olfactory bulb and brainstem. Accumulating evidence from experimental studies indicates that transneuronal propagation of misfolded alpha-synuclein is involved in the progression of PD. However, it cannot be ruled out that alpha-synuclein pathology in PD is multicentric in origin. Based on pathological findings from studies on human materials, the present review will update the progression pattern of alpha-synuclein pathology in PD.


Assuntos
Encéfalo/patologia , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Progressão da Doença , Humanos , Doença de Parkinson/metabolismo
18.
Neuropathology ; 40(1): 30-39, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31498507

RESUMO

Lewy body disease (LBD) is characterized by the presence of Lewy bodies (LBs) and Lewy neurites and comprises a diagnostic spectrum that includes Parkinson's disease (PD), PD with dementia, and dementia with LBs. LBs and Lewy neurites are insoluble aggregates composed mainly of phosphorylated α-synuclein and can be widely distributed throughout the central and peripheral nervous systems. The distribution of LBs may determine the LBD phenotype. Braak hypothesized that Lewy pathology progresses ascendingly from the peripheral nervous system to the olfactory bulbs and brainstem and then to other brain regions. Braak's PD staging suggests that LBD is a prion-like disease. Most typical PD cases fit with Braak's PD staging, but the scheme fails in some cases. Alzheimer's disease, progressive supranuclear palsy, corticobasal syndrome, multiple system atrophy, frontotemporal lobar degeneration, Creutzfeldt-Jakob disease, cerebrovascular diseases, and essential tremor are common misdiagnoses for pathologically confirmed LBD. LBD exhibits considerable heterogeneity in both clinical and pathological settings, which makes clinical diagnosis challenging.


Assuntos
Encéfalo/patologia , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Encéfalo/metabolismo , Humanos , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Neuropatologia , alfa-Sinucleína/metabolismo
19.
Neurobiol Dis ; 127: 339-349, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30910745

RESUMO

Multiple system atrophy (MSA) is an adult-onset neurodegenerative disorder clinically characterized by autonomic failure in addition to various combinations of symptoms of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. Despite extensive research, the mechanisms underlying the progression of MSA remain unknown. Animal models of human diseases that recapitulate their clinical, biochemical and pathological features are indispensable for increasing our understanding of their underlying molecular mechanisms, which allows preclinical studies to be advanced. Because the onset of MSA occurs in middle age, an animal model that first manifests abnormal protein aggregates in adulthood would be most appropriate. We therefore used the Cre-loxP system to express inducible α-synuclein (Syn), a major component of the pathological hallmark of MSA, to generate a mouse model of MSA. Beginning in adulthood, these MSA model mice express excessive levels of Syn in oligodendrocytes, resulting in abnormal Syn accumulation and modifications similar to those observed in human MSA pathology. Additionally, MSA model mice exhibit some clinical features of MSA, including decreased motor activity. These findings suggest that this new mouse model of MSA represents a useful tool for analyzing the pathophysiological alterations that underlie the progression of this disease.


Assuntos
Encéfalo/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Oligodendroglia/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Oligodendroglia/patologia , Fosforilação , alfa-Sinucleína/genética
20.
Biochem Biophys Res Commun ; 514(3): 672-677, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31078265

RESUMO

Physical exercise influences cognitive function through a cascade of cellular processes that promote angiogenesis and neurogenesis. Autophagy is a cellular degradation system that is capable of producing energy in response to various conditions such as starvation, physical exercise and several treatments. Our previous report demonstrated that a disaccharide, trehalose, induced autophagy in the brain and reduced the levels of potentially toxic proteins. To achieve more efficient induction of autophagy in the brain, in this study, we examined the effect of disaccharide intake combined with exercise on autophagy in vivo. Consistent with the results of previous studies, our biochemical analyses demonstrated that trehalose increased the level of lipidated LC3 (LC3II) in the brain and liver of adult mice. However, contrary to our expectation, treadmill exercise reduced the level of LC3II in the brain and liver. Interestingly, glycogen storage was preserved in the liver of trehalose-intake mice even after exercise. Moreover, the trehalose transporter GLUT8 was increased in the liver by trehalose or in the brain by trehalose together with exercise. In contrast, the level of GLUT4 remained stable in the liver and brain even after exercise. These findings suggest that trehalose and GLUT8 coordinately contribute to energy supply in the brain.


Assuntos
Encéfalo/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Condicionamento Físico Animal , Trealose/metabolismo , Regulação para Cima , Animais , Autofagia , Dissacarídeos/metabolismo , Glicogênio/metabolismo , Fígado/metabolismo , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA