Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1183763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426033

RESUMO

Omicron variant is evolving into numerous sub variants with time and the information on the characteristics of these newly evolving variants are scant. Here we performed a pathogenicity evaluation of Omicron sub variants BA.2.12, BA.5.2 and XBB.1 against the Delta variant in 6-8-week-old Syrian hamster model. Body weight change, viral load in respiratory organs by real time RT-PCR/titration, cytokine mRNA quantification and histopathological evaluation of the lungs were performed. The intranasal infection of the BA.2.12, BA.5.2 and XBB.1 variants in hamster model resulted in body weight loss/reduced weight gain, inflammatory cytokine response and interstitial pneumonia with lesser severity compared to the Delta variant infection. Among the variants studied, BA.2.12 and XBB.1 showed lesser viral shedding through the upper respiratory tract, whereas the BA.5.2 showed comparable viral RNA shedding as that of the Delta variant. The study shows that the Omicron BA.2 sub variants may show difference in disease severity and transmissibility amongst each other whereas the overall disease severity of the Omicron sub variants studied were less compared to the Delta variant. The evolving Omicron sub variants and recombinants should be monitored for their properties.

2.
iScience ; 25(10): 105178, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36164480

RESUMO

The immunity acquired after natural infection or vaccinations against SARS-CoV-2 tend to wane with time. Here, we compared the protective efficacy of COVAXIN® following two- and three-dose immunizations against the Delta variant and also studied the efficacy of COVAXIN® against Omicron variants in a Syrian hamster model. Despite the comparable neutralizing antibody response against the homologous vaccine strain in both the two-dose and three-dose immunized groups, considerable reduction in the lung disease severity was observed in the 3 dose immunized group after Delta variant challenge. In the challenge study using the Omicron variants, i.e., BA.1.1 and BA.2, lesser virus shedding, lung viral load and lung disease severity were observed in the immunized groups. The present study shows that administration of COVAXIN® booster dose will enhance the vaccine effectiveness against the Delta variant infection and give protection against the BA.1.1 and BA.2 variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA