Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 20(1): 632-642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258826

RESUMO

In this study, we investigated the atomistic mechanism of structural excitation in a thermal process (thermal rejuvenation) of metallic glass. In a molecular dynamics framework, Cu-Zr metallic glass was rejuvenated by a thermal process composed of an isothermal heat treatment at a temperature above the glass transition temperature T g , followed by fast cooling. Atomistic analyses of the local rearrangement, potential energy, and geometrical structure revealed structural changes correlating to the local atomic order in the rejuvenation process. In the early stage of the heat treatment for thermal rejuvenation, the structural excitation exhibited spatial heterogeneity at the nanometer scale. More-excited regions (i.e., regions with large atomic non-affine and affine transformations) exhibited low-ordered structures and vice versa, implying that the local structural excitation is significantly correlated with the local atomic order. The structural excitation transitioned from partial to whole as the isothermal process proceeded above T g . Although rejuvenation decreased the ordered structure, the calculation results suggested the formation of newly ordered local structures and newly disordered local structures correlated to local structural excitations and atomic dynamics in the thermal process. These results indicate that the heterogeneous structure evolution of the rejuvenation process induces a redistribution of the local atomic order in the microstructure of metallic glasses.

2.
Sci Technol Adv Mater ; 18(1): 152-162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458739

RESUMO

Structural rejuvenation in metallic glasses by a thermal process (i.e. through recovery annealing) was investigated experimentally and theoretically for various alloy compositions. An increase in the potential energy, a decrease in the density, and a change in the local structure as well as mechanical softening were observed after thermal rejuvenation. Two parameters, one related to the annealing temperature, Ta/Tg, and the other related to the cooling rate during the recovery annealing process, Vc/Vi, were proposed to evaluate the rejuvenation phenomena. A rejuvenation map was constructed using these two parameters. Since the thermal history of metallic glasses is reset above 1.2Tg, accompanied by a change in the local structure, it is essential that the condition of Ta/Tg ≥ 1.2 is satisfied during annealing. The glassy structure transforms into a more disordered state with the decomposition of icosahedral short-range order within this temperature range. Therefore, a new glassy structure (rejuvenation) depending on the subsequent quenching rate is generated. Partial rejuvenation also occurs in a Zr55Al10Ni5Cu30 bulk metallic glass when annealing is performed at a low temperature (Ta/Tg ~ 1.07) followed by rapid cooling. This behavior probably originates from disordering in the weakly bonded (loosely packed) region. This study provides a novel approach to improving the mechanical properties of metallic glasses by controlling their glassy structure.

3.
J Phys Condens Matter ; 35(15)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36731175

RESUMO

A novel thermal rejuvenation treatment facility for Zr-based bulk metallic glass (BMG) was developed, consisting of a rapid heating and indirect liquid nitrogen quenching process. The re-introduction of free volume into thermally rejuvenated BMG results in more disordered state. The rejuvenation improves ductility, implying that the re-introduced free volume aids in the recovery of the shear transformation zone (STZ) site and volume. Actually, it is confirmed that relaxation significantly reduces STZ volume; however, it is recovered by thermal rejuvenation. Molecular dynamics simulations also indicate that rejuvenation enhances homogeneous deformation. The current findings indicate that the thermal rejuvenation method is extremely effective for recovering or improving the ductility of metallic glass that has been lost due to relaxation.

4.
Sci Rep ; 12(1): 21301, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494412

RESUMO

The dislocation-grain boundary (GB) interaction plays an important role in GB-related plasticity. Therefore, an atomistic investigation of the interaction provides a deeper understanding of the strength and fracture of polycrystalline metals. In this study, we investigated the absorption of a screw dislocation with a Burgers vector perpendicular to the GB normal and the corresponding symmetric tilt grain boundaries (STGBs) in BCC-Fe based on molecular static simulations focusing on the STGB-dislocation interaction energy and atomistic structural changes at GB. The STGB-screw dislocation interaction depends on the energetical stability of the STGB against the GB shift along the Burgers vector direction. When the interaction exhibited a large attractive interaction energy, the dislocation dissociation and the GB shift along the Burgers vector direction occurred simultaneously. The interaction energy reveals that the interaction depends on the energetical stability of the STGB in terms of the GB shift in addition to the geometrical descriptor of the GB type, such as the Σ value. The same behavior was also obtained in the reaction when the second dislocation was introduced. We also discuss the screw dislocation absorption and rearrangement of the GB atomistic structure in STGB from an energetic viewpoint.


Assuntos
Fraturas Ósseas , Luxações Articulares , Estruturas Vegetais , Parafusos Ósseos , Grão Comestível
5.
Materials (Basel) ; 14(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918894

RESUMO

The attractive strain burst phenomenon, so-called "pop-in", during indentation-induced deformation at a very small scale is discussed as a fundamental deformation behavior in various materials. The nanoindentation technique can probe a mechanical response to a very low applied load, and the behavior can be mechanically and physically analyzed. The pop-in phenomenon can be understood as incipient plasticity under an indentation load, and dislocation nucleation at a small volume is a major mechanism for the event. Experimental and computational studies of the pop-in phenomenon are reviewed in terms of pioneering discovery, experimental clarification, physical modeling in the thermally activated process, crystal plasticity, effects of pre-existing lattice defects including dislocations, in-solution alloying elements, and grain boundaries, as well as atomistic modeling in computational simulation. The related non-dislocation behaviors are also discussed in a shear transformation zone in bulk metallic glass materials and phase transformation in semiconductors and metals. A future perspective from both engineering and scientific views is finally provided for further interpretation of the mechanical behaviors of materials.

6.
Materials (Basel) ; 14(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34640060

RESUMO

The copper harmonic structure, which consists of a coarse-grained "core" surrounded by a three-dimensional continuously connected fine-grained "shell," exhibits both high ductility and high strength. In the present study, dislocation interactions at the shell-core boundary in the copper harmonic structure were directly measured using nanoindentation and microstructural observations via kernel average misorientation (KAM) to further understand the reason for its excellent mechanical properties. KAM analysis showed that the dislocation density in the vicinity of the shell-core boundary within the core region gradually increases with increasing plastic strain. The variation in the nanohardness exactly corresponds to the KAM, indicating that the higher strength is primarily caused by the higher dislocation density. The critical load for nanoindentation-induced plasticity initiation was lower at the shell-core boundary than at the core-core boundary, indicating a higher potency of dislocation emission at the shell-core boundary. Because dislocation-dislocation interactions are one of the major causes of the increase in the flow stress leading to higher strain hardening rates during deformation, the excellent balance between strength and ductility is attributed to the higher potency of dislocation emission at the shell-core boundary.

7.
Phys Rev E ; 100(4-1): 043002, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770901

RESUMO

Avalanche behaviors, characterized by power-law statistics and structural relaxation that induces shear localization in amorphous plasticity, play an essential role in deciding the mechanical properties of amorphous metallic solids (i.e., metallic glasses). However, their interdependence is still not fully understood. To investigate the influence of structural relaxation on elementary avalanche behavior, we perform molecular-dynamics simulations for the shear deformation test of metallic glasses using two typical metallic-glass models comprising a less-relaxed (as-quenched) glass and a well-relaxed (well-aged) glass exhibiting a relatively homogeneous deformation and a shear-band-like heterogeneous deformation, respectively. The data on elementary avalanches obtained from both glass models follow the same power-law statistics with different maximum event sizes, and the well-relaxed glass shows shear localization. Evaluating the spatial correlation functions of the nonaffine squared displacements of atoms during each elementary avalanche event, we observe that the shapes of the elementary avalanche regions in the well-relaxed glasses tend to be anisotropic, whereas those in the less-relaxed glasses are relatively isotropic. Furthermore, we demonstrate that a temporal clustering in the direction of the avalanche propagation emerges, and a considerable correlation between the anisotropy and avalanche size exists in the well-relaxed glass model.

8.
Sci Rep ; 7(1): 7194, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775268

RESUMO

Theoretical prediction of glass forming ability (GFA) of metallic alloys is a key process in exploring metallic alloy compositions with excellent GFA and thus with the ability to form a large-sized bulk metallic glass. Molecular dynamics (MD) simulation is a promising tool to achieve a theoretical prediction. However, direct MD prediction continues to be challenging due to the time-scale limitation of MD. With respect to practical bulk metallic glass alloys, the time necessary for quenching at a typical cooling rate is five or more orders of magnitude higher than that at the MD time-scale. To overcome the time-scale issue, this study proposes a combined method of classical nucleation theory and MD simulations. The method actually allows to depict the time-temperature-transformation (TTT) diagram of the bulk metallic glass alloys. The TTT directly provides a prediction of the critical cooling rate and GFA. Although the method assumes conventional classical nucleation theory, all the material parameters appearing in the theory were determined by MD simulations using realistic interatomic potentials. The method is used to compute the TTT diagrams and critical cooling rates of two Cu-Zr alloy compositions (Cu50Zr50 and Cu20Zr80). The results indicate that the proposed method reasonably predicts the critical cooling rate based on the computed TTT.

9.
Sci Rep ; 5: 10545, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26010470

RESUMO

Rejuvenation is the configurational excitation of amorphous materials and is one of the more promising approaches for improving the deformability of amorphous metals that usually exhibit macroscopic brittle fracture modes. Here, we propose a method to control the level of rejuvenation through systematic thermal processing and clarify the crucial feasibility conditions by means of molecular dynamics simulations of annealing and quenching. We also experimentally demonstrate rejuvenation level control in Zr(55)Al(10)Ni(5)Cu(30) bulk metallic glass. Our local heat-treatment recipe (rising temperature above 1.1T(g), followed by a temperature quench rate exceeding the previous) opens avenue to modifying the glass properties after it has been cast and processed into near component shape, where a higher local cooling rate may be afforded by for example transient laser heating, adding spatial control and great flexibility to the processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA