Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 55(5): 222-234, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939204

RESUMO

We examined the effect of chronic restraint stress and the counteractive effects of daily exercise on the molecular basis of the brain-bone marrow (BM) interactions, by especially focusing on the paraventricular nucleus (PVN) of the hypothalamus. Male Wistar rats were assigned into control, restraint stress, and stress + daily spontaneous exercise (SE) groups. BM and hypothalamic gene expression profiles were examined through the undertaking of RT-PCR and microarrays, respectively. The inflammatory blood cell population was investigated through flow cytometry. Through the use of immunohistochemistry, we examined the presence of BM-derived C-C chemokine receptor type 2 (CCR2)-expressing microglial cells in the rat PVN. The gene expression levels of BM inflammatory factors such as those of interleukin 1 beta and CCR2, and the inflammatory blood cell population were found to be significantly higher in both restrained groups compared with control group. Interestingly, chronic restraint stress alone activated the recruitment of BM-derived CCR2-expressing microglial cells into the PVN, whereas daily spontaneous exercise prevented it. A notable finding was that restraint stress upregulated relative gene expression of hypothalamic matrix metalloproteinase 3 (MMP3), which increases the permeability of the blood-brain barrier (BBB), and that exercise managed to normalize it. Moreover, relative expression of some hypothalamic genes directly involved in the facilitation of cell migration was downregulated by daily exercise. Our findings suggest that daily spontaneous exercise can reduce the numbers of BM-derived CCR2-expressing microglial cells into the PVN through the prevention of stress-induced changes in the hypothalamic gene expression.NEW & NOTEWORTHY Chronic restraint stress can upregulate MMP3 gene expression in the rat hypothalamus, whereas daily spontaneous exercise can prevent this stress-induced effect. Stress-induced BM-derived inflammatory cell recruitment into the rat PVN can be prevented by daily spontaneous exercise. Stress-induced increase of hypothalamic MMP3 gene expression may be responsible for BBB injury, thereby allowing for BM-derived inflammatory cells to be recruited and to accumulate in the rat PVN, and to be subsequently involved in the onset of stress-induced hypertension.


Assuntos
Hipertensão , Metaloproteinase 3 da Matriz , Ratos , Masculino , Animais , Ratos Wistar , Medula Óssea , Encéfalo
2.
Scand J Med Sci Sports ; 33(8): 1552-1559, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37167066

RESUMO

This longitudinal study examined the relationship between flexibility-activity and blood-pressure (BP) change among older adults in Japan. Our study included 452 older adults who took part in our survey in both 2012/2013 and 2017/2018. The seated systolic blood pressure (SBP) and diastolic BP (DBP) were measured both at baseline and at the 5 years follow-up. The frequencies of the different physical activities at baseline were assessed using a questionnaire. A generalized linear mixed model was used to estimate the non-standardized coefficient (B) of BP change associated with flexibility activity, after adjustments for sex, age, body mass index, smoking status, alcohol consumption, antihypertensive medication use, history of heart disease, walking time, and muscle-strengthening activity as a fixed-effect, and area of residence as a random-effect. Higher flexibility-activity frequency was significantly associated with reduced SBP (B = -0.77 [95% confidence intervals = -1.36, -0.18], p for linear trend = 0.01, p for quadratic trend = 0.85) and DBP (-0.33 [-0.71, 0.05], p for linear trend = 0.09, p for quadratic trend = 0.04). Engaging in flexibility activity for 3 days per week was significantly associated with a reduction in DBP (B = -4.16, 95% CI [-7.53, -0.79], p = 0.02) compared with that in the reference group (0 days per week). Interaction tests were not significant between basic variables (sex, age, BMI, and antihypertensive medication) and flexibility. In conclusion, higher flexibility activity frequency was associated with a reduction in BP in older adults. Future longitudinal and interventional studies should examine the effects of flexibility activity on cardiovascular disease prevention.


Assuntos
Hipertensão , Humanos , Idoso , Hipertensão/epidemiologia , Hipertensão/tratamento farmacológico , Estudos Longitudinais , Anti-Hipertensivos/uso terapêutico , Japão , Pressão Sanguínea/fisiologia
3.
Physiol Genomics ; 54(3): 99-114, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100063

RESUMO

Estrogen plays a role in cardiovascular functions, emotional health, and energy homeostasis via estrogen receptors expressed in the brain. The comorbid relationship between rising blood pressure, a decline in mood and motivation, and body weight gain after menopause, when estrogen levels drop, suggests that the same brain area(s) contributes to protection from all of these postmenopausal disorders. The amygdala, a major limbic system nuclear complex known to express high estrogen receptor levels, is involved in the regulation of such physiological and psychological responses. We hypothesized that elevated estrogen levels contribute to premenopausal characteristics by activating specific genes and pathways in the amygdala. We examined the effect of 1 mo of estradiol treatment on the gene expression profile in the amygdala of ovariectomized young adult female spontaneously hypertensive rats. Estradiol substitution significantly decreased blood pressure, prevented body weight gain, and enhanced the voluntary physical activity of ovariectomized rats. In the amygdala of ovariectomized rats, estradiol treatment downregulated the expression of genes associated with estrogen signaling, cholinergic synapse, dopaminergic synapse, and long-term depression pathways. These findings indicate that the transcriptomic characteristics of the amygdala may be involved in estrogen-dependent regulation of blood pressure, physical activity motivation, and body weight control in young adult female spontaneously hypertensive rats.


Assuntos
Estradiol , Transcriptoma , Tonsila do Cerebelo/metabolismo , Animais , Peso Corporal , Estradiol/farmacologia , Estrogênios/metabolismo , Feminino , Humanos , Ovariectomia , Ratos , Ratos Endogâmicos SHR , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transcriptoma/genética
4.
J Neurosci Res ; 99(10): 2558-2572, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245603

RESUMO

In athletes, long-term intensive training has been shown to increase unparalleled athletic ability and might induce brain plasticity. We evaluated the structural connectome of world-class gymnasts (WCGs), as mapped by diffusion-weighted magnetic resonance imaging probabilistic tractography and a multishell, multitissue constrained spherical deconvolution method to increase the precision of tractography at the tissue interfaces. The connectome was mapped in 10 Japanese male WCGs and in 10 age-matched male controls. Network-based statistic identified subnetworks with increased connectivity density in WCGs, involving the sensorimotor, default mode, attentional, visual, and limbic areas. It also revealed a significant association between the structural connectivity of some brain structures with functions closely related to the gymnastic skills and the D-score, which is used as an index of the gymnasts' specific physical abilities for each apparatus. Furthermore, graph theory analysis demonstrated the characteristics of brain anatomical topology in the WCGs. They displayed significantly increased global connectivity strength with decreased characteristic path length at the global level and higher nodal strength and degree in the sensorimotor, default mode, attention, and limbic/subcortical areas at the local level as compared with controls. Together, these findings extend the current understanding of neural mechanisms that distinguish WCGs from controls and suggest brain anatomical network plasticity in WCGs resulting from long-term intensive training. Future studies should assess the contribution of genetic or early-life environmental factors in the brain network organization of WCGs. Furthermore, the indices of brain topology (i.e., connection density and graph theory indices) could become markers for the objective evaluation of gymnastic performance.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Ginástica/fisiologia , Plasticidade Neuronal/fisiologia , Adolescente , Humanos , Masculino , Probabilidade , Adulto Jovem
5.
Physiol Genomics ; 50(4): 272-286, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373075

RESUMO

Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.


Assuntos
Pressão Sanguínea/fisiologia , Canais de Cátion TRPV/metabolismo , Transcriptoma/genética , Animais , Pressão Sanguínea/genética , Feminino , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Caracteres Sexuais , Núcleo Solitário/metabolismo , Canais de Cátion TRPV/genética
6.
J Physiol ; 594(20): 5975-5989, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27230966

RESUMO

KEY POINTS: Evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response, but its mode of action is poorly understood. In the SHR, we observed an increase in T cells and macrophages in the brainstem; in addition, gene expression profiling data showed that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. When LTB4 receptor 1 (BLT1) receptors were blocked with CP-105,696, arterial pressure was reduced in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in systolic blood pressure (BP) indicators. These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension. ABSTRACT: Accumulating evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response. However, the mechanism for LTB4 -mediated inflammation in hypertension is poorly understood. Here we report in the SHR, increased brainstem infiltration of T cells and macrophages plus gene expression profiling data showing that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. Chronic blockade of the LTB4 receptor 1 (BLT1) receptor with CP-105,696, reduced arterial pressure in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in low and high frequency spectra of systolic blood pressure, and an increase in spontaneous baroreceptor reflex gain (sBRG). These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension.


Assuntos
Pressão Arterial/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Receptores do Leucotrieno B4/antagonistas & inibidores , Animais , Pressão Arterial/fisiologia , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Benzopiranos/farmacologia , Ácidos Carboxílicos/farmacologia , Hipertensão/patologia , Inflamação/metabolismo , Inflamação/patologia , Leucotrieno B4/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
7.
J Hypertens ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38973449

RESUMO

OBJECTIVE: Chronic stress can cause hypertension, whereas daily exercise promotes healthy well being through destressing. Although the nucleus of the solitary tract (NTS) is involved in the development of hypertension, the molecular and physiological mechanisms of stress and exercise remain unclear. In this study, we tested whether gene expression in the NTS is altered by stress and daily exercise and whether this is involved in cardiovascular regulation. METHODS: We have performed RT2 Profiler PCR arrays targeting a panel of neurotransmitter receptor genes in the NTS of Wistar rats subjected to chronic restraint stress (1 h a day over 3 weeks) with or without voluntary wheel exercise. We also performed immunohistochemistry to determine whether the identified molecules were expressed at the protein level. Additionally, microinjection studies in anesthetized rats were performed to examine whether validated molecules exhibit physiological roles in cardiovascular regulation of the NTS. RESULTS: We observed that blood pressure was significantly increased by stress and the increase was suppressed by exercise. Using PCR analysis, we determined that the expression levels of four genes in the NTS, including the dopamine receptor D1 gene (Drd1), were significantly affected by stress and suppressed by exercise. We also examined dopamine D1 receptor (D1R) expression in NTS neurons and found significantly greater expression in the stressed than nonstressed animals. Furthermore, the microinjection of a D1R agonist into the NTS in anesthetized rats induced hypotensive effects. CONCLUSION: These results suggest that NTS D1R plays a role in the counteracting processes of stress-induced hypertension.

8.
Physiol Genomics ; 45(1): 58-67, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23132760

RESUMO

The nucleus tractus solitarii (NTS) controls the cardiovascular system during exercise, and alteration of its function may underlie exercise-induced cardiovascular adaptation. To understand the molecular basis of the NTS's plasticity in regulating blood pressure (BP) and its potential contribution to the antihypertensive effects, we characterized the gene expression profiles at the level of the NTS after long-term daily wheel running in spontaneously hypertensive rats (SHRs). Genome-wide microarray analysis was performed to screen for differentially expressed genes in the NTS between exercise-trained (12 wk) and control SHRs. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes database revealed that daily exercise altered the expression levels of NTS genes that are functionally associated with metabolic pathways (5 genes), neuroactive ligand-receptor interactions (4 genes), cell adhesion molecules (3 genes), and cytokine-cytokine receptor interactions (3 genes). One of the genes that belonged to the neuroactive ligand-receptor interactions category was histamine receptor H(1). Since we confirmed that the pressor response induced by activation of this receptor is increased after long-term daily exercise, it is suggested that functional plasticity in the histaminergic system may mediate the facilitation of blood pressure control in response to exercise but may not be involved in the lowered basal BP level found in exercise-trained SHRs. Since abnormal inflammatory states in the NTS are known to be prohypertensive in SHRs, altered gene expression of the inflammatory molecules identified in this study may be related to the antihypertensive effects in exercise-trained SHRs, although such speculation awaits functional validation.


Assuntos
Pressão Sanguínea/fisiologia , Esforço Físico/fisiologia , Ratos Endogâmicos SHR/metabolismo , Núcleo Solitário/fisiologia , Transcriptoma/genética , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Análise em Microsséries , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Endogâmicos SHR/fisiologia , Receptores Histamínicos/metabolismo , Núcleo Solitário/metabolismo
9.
Endocr J ; 59(6): 447-56, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22361995

RESUMO

Understanding how the 24-hour blood-pressure rhythm is programmed has been one of the most challenging questions in cardiovascular research. The 24-hour blood-pressure rhythm is primarily driven by the circadian clock system, in which the master circadian pacemaker within the suprachiasmatic nuclei of the hypothalamus is first entrained to the light/dark cycle and then transmits synchronizing signals to the peripheral clocks common to most tissues, including the heart and blood vessels. However, the circadian system is more complex than this basic hierarchical structure, as indicated by the discovery that peripheral clocks are either influenced to some degree or fully driven by temporal changes in energy homeostasis, independent of the light entrainment pathway. Through various comparative genomic approaches and through studies exploiting mouse genetics and transgenics, we now appreciate that cardiovascular tissues possess a large number of metabolic genes whose expression cycle and reciprocally affect the transcriptional control of major circadian clock genes. These findings indicate that metabolic cycles can directly or indirectly affect the diurnal rhythm of cardiovascular function. Here, we discuss a framework for understanding how the 24-hour blood-pressure rhythm is driven by the circadian system that integrates cardiovascular and metabolic function.


Assuntos
Pressão Sanguínea/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Animais , Pressão Sanguínea/genética , Encéfalo/fisiologia , Proteínas CLOCK/genética , Proteínas CLOCK/fisiologia , Fenômenos Fisiológicos Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Fotoperíodo
10.
Front Physiol ; 13: 820112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721563

RESUMO

Humans and animals can determine whether a situation is favorable to them and act accordingly. For this, the autonomic tuning of the cardiovascular system to supply energy to active skeletal muscles through the circulatory system is as important as motor control. However, how the autonomic cardiovascular responses are regulated in dynamically changing environments and the neuronal mechanisms underlying these responses remain unclear. To resolve these issues, we recorded the blood pressure and heart rate of head-restrained rats during dynamically changing appetitive and aversive classical conditioning tasks. The rats displayed various associations between conditioned stimuli and unconditioned stimuli in appetitive (sucrose water), neutral (no outcome), and aversive (air puff) blocks. The blood pressure and heart rate in the appetitive block gradually increased in response to the reward-predicting cue and the response to the actual reward vigorously increased. The reward-predictive response was significantly higher than the responses obtained in the neutral and aversive condition blocks. To investigate whether the reward-predictive pressor response was caused by orofacial movements such as anticipatory licking behavior, we separately analyzed high- and low-licking trials. The conditioned pressor response was observed even in trials with low-licking behaviors. Blood pressure and heart rate responses to the air puff-predicting cue in the aversive block were not significantly different from the responses in the neutral block. The conditioned blood pressure response rapidly changed with condition block switching. Furthermore, to examine the contribution of the amygdala as an emotion center to these conditioned responses, we bilaterally microinjected a GABAA receptor agonist, muscimol, into the central nucleus of the amygdala. Pharmacological inactivation of the central nucleus of the amygdala significantly decreased the reward-predictive pressor responses. These results suggest that the blood pressure is adaptively and rapidly regulated by emotional conditioned stimuli and that the central nucleus of the amygdala participates in regulating the pressor response in dynamically changing situations.

11.
Neuroscience ; 496: 52-63, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35690335

RESUMO

To date, the mechanism of central fatigue during high-intensity exercise has remained unclear. Here we elucidate the central mechanisms of cardiovascular regulation during high-intensity exercise with a focus on the hypothesis that amygdala activation acts to limit maximum exercise performance. In the first of three experiments, we probed the involvement of the central nucleus of the amygdala (CeA) in such regulation. Wistar rats were subjected to a maximum exercise test and their total running time and cardiovascular responses were compared before and after bilateral CeA lesions. Next, probing the role of central pathways, we tested whether high-intensity exercise activated neurons in CeA and/or the hypothalamic paraventricular nucleus (PVN) that project to the nucleus tractus solitarius (NTS). Finally, to understand the potential autonomic mechanisms affecting maximum exercise performance, we measured the cardiovascular responses in anesthetized rats to electrical microstimulation of the CeA, PVN, or both. We have found that (1) CeA lesions resulted in an increase in the total exercise time and the time at which an abrupt increase in arterial pressure appeared, indicating an apparent suppression of fatigue. (2) We confirmed that high-intensity exercise activated both the PVN-NTS and CeA-NTS pathways. Moreover, we discovered that (3) while stimulation of the CeA or PVN alone both induced pressor responses, their simultaneous stimulation also increased muscle vascular resistance. These results are evidence that cardiovascular responses during high-intensity exercise are affected by CeA activation, which acts to limit maximum exercise performance, and may implicate autonomic control modulating the PVN-NTS pathway via the CeA.


Assuntos
Núcleo Central da Amígdala , Animais , Fadiga , Núcleo Hipotalâmico Paraventricular , Ratos , Ratos Wistar , Núcleo Solitário/fisiologia
12.
Am J Physiol Heart Circ Physiol ; 301(2): H523-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622829

RESUMO

Axons of histamine (HA)-containing neurons are known to project from the posterior hypothalamus to many areas of the brain, including the nucleus tractus solitarii (NTS), a central brain structure that plays an important role in regulating arterial pressure. However, the functional significance of NTS HA is still not fully established. In this study, we microinjected HA or 2-pyridylethylamine, a HA-receptor H(1)-specific agonist, into the NTS of urethane-anesthetized Wister rats to identify the potential functions of NTS HA on cardiovascular regulation. When HA or H(1)-receptor-specific agonist was bilaterally microinjected into the NTS, mean arterial pressure (MAP) and heart rate (HR) were significantly increased, whereas pretreatment with the H(1)-receptor-specific antagonist cetirizine into the NTS significantly inhibited the cardiovascular responses. The maximal responses of MAP and HR changes induced by HA or H(1)-receptor-specific agonist were dose dependent. We also confirmed gene expression of HA receptors in the NTS and that the expression level of H(1) mRNA was higher than that of the other subtypes. In addition, we found that H(1) receptors are mainly expressed in neurons of the NTS. These findings suggested that HA within the NTS may play a role in regulating cardiovascular homeostasis via activation of H(1) receptors expressed in the NTS neurons.


Assuntos
Pressão Sanguínea , Frequência Cardíaca , Histamina/metabolismo , Receptores Histamínicos H1/metabolismo , Núcleo Solitário/metabolismo , Análise de Variância , Animais , Pressão Sanguínea/efeitos dos fármacos , Cetirizina/administração & dosagem , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Frequência Cardíaca/efeitos dos fármacos , Histamina/administração & dosagem , Agonistas dos Receptores Histamínicos/administração & dosagem , Antagonistas dos Receptores Histamínicos H1/administração & dosagem , Imuno-Histoquímica , Masculino , Microinjeções , Piridinas/administração & dosagem , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Histamínicos H1/efeitos dos fármacos , Receptores Histamínicos H1/genética , Núcleo Solitário/efeitos dos fármacos
13.
Am J Physiol Regul Integr Comp Physiol ; 298(1): R183-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19907006

RESUMO

Recent gene array and molecular studies have suggested that an abnormal gene expression profile of interleukin-6 (IL-6) in the nucleus tractus solitarii (NTS), a pivotal region for regulating arterial pressure, may be related to the development of neurogenic hypertension. However, the precise functional role of IL-6 in the NTS remains unknown. In the present study, we have tested whether IL-6 affects cardiovascular control at the level of the NTS. IL-6 (1, 10, and 100 fmol) was microinjected in the NTS of Wistar rats (280-350 g) under urethane anesthesia. Although the baseline levels of arterial pressure and heart rate did not change following IL-6 injections, the cardiac baroreflex in response to increased arterial pressure was dose-dependently attenuated. In addition, IL-6 (100 fmol) microinjections also attenuated l-glutamate-induced bradycardia at the level of the NTS. Immunohistochemical detection of IL-6 in naïve rats demonstrated that it was predominantly observed in neurons within the brain stem, including the NTS. These findings suggest that IL-6 within the NTS may play an important role for regulating cardiovascular control via modulation of input signals from baroreceptor afferents. Whether the abnormal gene expression of IL-6 in the NTS is associated in a causal way with hypertension remains to be resolved.


Assuntos
Barorreflexo/efeitos dos fármacos , Coração/fisiologia , Interleucina-6/farmacologia , Núcleo Solitário/efeitos dos fármacos , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Interleucina-6/administração & dosagem , Interleucina-6/metabolismo , Masculino , Microinjeções , Modelos Animais , Ratos , Ratos Wistar , Núcleo Solitário/metabolismo
14.
Exp Physiol ; 95(5): 595-600, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19923159

RESUMO

Since the nucleus tractus solitarii (NTS) is a pivotal region for regulating the set-point of arterial pressure, we proposed a role for it in the development of neurogenic hypertension. Recent studies have suggested that proinflammatory molecules, such as junctional adhesion molecule 1 (JAM-1) are highly expressed in the NTS of an animal model of human essential hypertension, the spontaneously hypertensive rat (SHR), compared with normotensive rats (Wistar-Kyoto, WKY). Moreover, we have also shown endogenous leukocyte accumulation inside capillaries within the NTS of SHR but not WKY rats. Based on this evidence, we hypothesized that gene expression of cytokines/chemokines is altered in the NTS of SHR. We have screened for abnormally expressed inflammatory mediators in the NTS of SHR using the RT2 Profiler PCR arrays, which were designed specifically to target major cytokines/chemokines. The specific PCR array revealed that seven genes were less expressed in the NTS of SHR compared with WKY rats (more than twofold differences), while only two genes were more expressed in the SHR. Moreover, we identified that some of these validated molecules exhibit important functional roles for cardiovascular homeostasis at the level of the NTS. We suggest that abnormal gene expression of proinflammatory molecules, such as JAM-1, causes leukocyte accumulation within the vasculature in the NTS of SHR. Consequently, gene expression of specific cytokines/chemokines may be downregulated to avoid further strong inflammatory activity in the NTS of SHR at the expense of an alteration in neuronal activity that leads to cardiovascular autonomic pathology. Importantly, to allow translation of our work, these novel insights need to be assessed in hypertensive human brainstem tissue; their confirmation could lead to novel therapeutic approaches for one of the world's most prevalent diseases.


Assuntos
Citocinas/genética , Hipertensão/fisiopatologia , Núcleo Solitário/fisiopatologia , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
15.
Neuroscience ; 432: 150-159, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109531

RESUMO

Tuning of the cardiovascular response is crucial to maintain performance during high-intensity exercise. It is well known that the nucleus of the solitary tract (NTS) in the brainstem medulla plays a central role in cardiovascular regulation; however, where and how upper brain regions form circuits with NTS and coordinately control cardiovascular responses during high-intensity exercise remain unclear. Here focusing on the amygdala and claustrum, we investigated part of the mechanism for regulation of the cardiovascular system during exercise. In rats, c-Fos immunostaining was used to examine whether the amygdala and claustrum were activated during treadmill exercise. Further, we examined arterial pressure responses to electrical and chemical stimulation of the claustrum region. We also confirmed the anatomical connections between the amygdala, claustrum, and NTS by retrograde tracer injections. Finally, we performed simultaneous electrical stimulation of the claustrum and amygdala to examine their functional connectivity. c-Fos expression was observed in the amygdala and the posterior part of the claustrum (pCL), but not in the anterior part, in an exercise intensity-dependent manner. pCL stimulation induced a depressor response. Using a retrograde tracer, we confirmed direct projections from the amygdala to the pCL and NTS. Simultaneous stimulation of the central nucleus of the amygdala and pCL showed a greater pressor response compared with the stimulation of the amygdala alone. These results suggest the amygdala and pCL are involved in different phases of exercise. More speculatively, these areas might coordinately tune cardiovascular responses that help maintain performance during high-intensity exercise.


Assuntos
Sistema Cardiovascular , Claustrum , Tonsila do Cerebelo/metabolismo , Animais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Núcleo Solitário/metabolismo
16.
J Physiol Sci ; 70(1): 43, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948133

RESUMO

The relationship between long-term intensive training and brain plasticity in gymnasts has recently been reported. However, the relationship between abilities in different gymnastic events and brain structural changes has not been explored. This study aimed to evaluate the correlation between world-class gymnasts (WCGs)' specific abilities in different gymnastics events and their gray matter (GM) volume. Ten right-handed Japanese male WCGs and 10 right-handed gender- and age-matched controls with no history of gymnastic training participated in this study. Whole brain three-dimensional T1-weighted images (magnetization-prepared rapid gradient-echo sequence) with 0.90 mm3 voxels were obtained using a 3 T-MRI scanner from each subject. Volume-based morphometry (VolBM) was used to compare GM volume differences between WCGs and controls. We then explored the correlation between specific gymnastic abilities using different gymnastic apparatuses, and GM volume. Significantly higher GM volumes (false discovery rate-corrected p < 0.05) in the inferior parietal lobule, middle temporal gyrus, precentral gyrus, rostral middle frontal gyrus, and superior frontal gyrus were demonstrated in WCGs, compared with controls using VolBM. Moreover, significant positive correlations were observed between brain regions and the difficulty scores for each gymnastic event, for example, rings and inferior parietal lobule and parallel bars and rostral middle frontal gyrus. These results may reflect the neural basis of an outstanding gymnastic ability resulting from brain plasticity in areas associated with spatial perception, vision, working memory, and motor control.


Assuntos
Atletas , Espessura Cortical do Cérebro , Mapeamento Encefálico , Substância Cinzenta/diagnóstico por imagem , Ginástica , Imageamento por Ressonância Magnética , Adolescente , Desempenho Atlético , Estudos de Casos e Controles , Substância Cinzenta/fisiologia , Humanos , Masculino , Plasticidade Neuronal , Tamanho do Órgão , Condicionamento Físico Humano , Valor Preditivo dos Testes , Adulto Jovem
17.
Neurosci Biobehav Rev ; 33(2): 89-94, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18585782

RESUMO

Essential hypertension is idiopathic although it is accepted as a complex polygenic trait with underlying genetic components, which remain unknown. Our supposition is that hypertension involves activation of the sympathetic nervous system. One pivotal region controlling arterial pressure set point is nucleus tractus solitarii (NTS). We recently identified that pro-inflammatory molecules, such as junctional adhesion molecule-1 (JAM-1), were over expressed in endothelial cells of the microvasculature supplying the NTS in an animal model of human hypertension (the spontaneously hypertensive rat) compared to normotensive Wistar-Kyoto rats (WKY). Over expression of JAM-1 in NTS of WKY rats was pro-hypertensive and induced leukocyte adherence to the microvasculature. Since leukocyte adhesion causes cytokine release, we found expression of monocyte chemoattractant protein-1 (MCP-1) was higher in the NTS of SHR while inter-leukin-6 (IL-6) was lower compared to the WKY rat. Inflammation of the brainstem microvasculature may increase vascular resistance within the brainstem. High brainstem vascular resistance and its inflammation may release pathological paracrine signaling molecules affecting central neural cardiovascular activity conducive to neurogenic hypertension.


Assuntos
Tronco Encefálico/metabolismo , Hipertensão/metabolismo , Inflamação/complicações , Interleucina-6/metabolismo , Microvasos/metabolismo , Núcleo Solitário/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Quimiocina CCL2/metabolismo , Células Endoteliais/metabolismo , Hipertensão/etiologia , Inflamação/metabolismo , Microvasos/patologia , Núcleo Solitário/citologia
18.
Exp Physiol ; 94(7): 773-84, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19297387

RESUMO

Although both alpha(1)- and alpha(2)-adrenergic receptors (ARs) are known to be expressed in the nucleus of the solitary tract (NTS), the functional significance of these receptors is still not fully established. In this study, we microinjected alpha(1)- and alpha(2)-AR agonists into the NTS of urethane-anaesthetized Wister rats to study the cardiovascular effects in response to their activation. When the alpha(1)-AR agonist phenylephrine was microinjected into the area where barosensitive neurons are dominantly located (baro-NTS), mean arterial pressure (MAP) and heart rate (HR) were significantly elevated. When tested in the area where chemosensitive neurons are dominantly located (chemo-NTS), however, MAP and HR were significantly decreased. Pretreatment with the non-specific alpha-AR antagonist phentolamine into the NTS inhibited the phenylephrine-induced cardiovascular responses. In contrast, microinjection of the alpha(2)-AR agonist clonidine into either the baro-NTS or the chemo-NTS decreased MAP and HR; they were also inhibited by the alpha(2)-adrenergic antagonist yohimbine. Moreover, we immunohistochemically identified that cardiovascular responses induced by alpha(1)-ARs may be mediated by NTS neurons while those induced by alpha(2)-ARs may be mediated by astrocytes located in the barosensitive and chemosensitive areas of the NTS. These results suggest that both types of alpha-AR expressed in the NTS may be involved in regulating cardiovascular homeostasis via modulation of input signals from baroreceptor and chemoreceptor afferents; however, cardiovascular responses produced by stimulation of alpha(1)-ARs are strictly location specific within the NTS.


Assuntos
Receptores Adrenérgicos alfa/fisiologia , Núcleo Solitário/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/fisiologia , Clonidina/farmacologia , Perfilação da Expressão Gênica , Frequência Cardíaca/efeitos dos fármacos , Fentolamina/farmacologia , Fenilefrina/farmacologia , Pressorreceptores/efeitos dos fármacos , Pressorreceptores/fisiologia , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 2/genética , Núcleo Solitário/efeitos dos fármacos , Ioimbina/farmacologia
19.
Neurosci Lett ; 449(1): 10-4, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18996170

RESUMO

Although rats often show an upright standing behavior the cardiovascular response during the behavior has not yet been fully clarified. In this study we quantified the activity of upright standing behavior in rats using infrared beam detectors and measured cardiovascular variables during the behavior. Rats demonstrated a high level of upright standing activity as they showed the upright posture more than 500 times per day at 10 weeks of age. The average upright standing duration time was less than 10s. Arterial pressure slightly decreased while heart rate increased in response to the behavior and these responses were not affected by sino-aortic denervation. Our results indicate that other mechanisms such as the vestibulo-cardiovascular reflex may completely compensate the lack of the baroreceptor reflex to maintain cardiovascular homeostasis in response to acute positional changes in rats. Moreover rats demonstrate complex integrative mechanisms maintaining cardiovascular homeostasis against the upright standing behavior which frequently occurs in rats.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Consciência , Postura/fisiologia , Fatores Etários , Animais , Barorreflexo , Comportamento Animal , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
20.
Can J Neurol Sci ; 36(3): 349-55, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19534337

RESUMO

BACKGROUND: Sema4D/CD100 is a type of class 4 semaphorin, exhibiting crucial roles in growth cone guidance in developing neurons. Sema4D is widely expressed throughout the central nervous system in embryonic mouse brain, and is selectively localized to oligodendrocytes and myelin in the postnatal brain. However, direct evidence of the actual involvement of Sema4D in the neuronal network development crucial for neurobehavioral performance is still lacking. The present study therefore examined whether Sema4D deficiency leads to abnormal behavioral development. METHODS: Both wild-type and Sema4D-deficient mice were subjected to behavioral analyses including open-field, adhesive tape removal, rotarod tests and a water maze task. RESULTS: Open-field tests revealed increased locomotor activity in Sema4D-deficient mice with less percentage of time spent in the center of the field. In both the adhesive tape removal and rotarod tests, which examine motor coordination and balance, Sema4D-deficient mice showed significantly superior performance, suggesting facilitated motor behavior. Both Sema4D-deficient and wild-type mice successfully learnt the water maze task, locating a hidden escape platform, and also showed precise memory for the platform position in probe tests. However, the swimming speed of Sema4D-deficient mice was significantly faster than that of wild-type mice, providing further evidence of their accelerated motor behavior. CONCLUSION: Our mouse behavioral analyses revealed enhanced motor activity in Sema4D-deficient mice, suggesting the crucial involvement of Sema4D in the neurodevelopmental processes of the central structures mediating motor behavior in mice.


Assuntos
Comportamento Exploratório/fisiologia , Locomoção/genética , Atividade Motora/genética , Desempenho Psicomotor/fisiologia , Semaforinas/deficiência , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Calbindinas , Cerebelo/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Tempo de Reação/genética , Teste de Desempenho do Rota-Rod/métodos , Proteína G de Ligação ao Cálcio S100/metabolismo , Comportamento Espacial/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA