RESUMO
The inherent flexibility of redox-active organic polymers and carbon-based fillers, combined with flexible current collectors (CCs) is ideal for the fabrication of flexible batteries. Herein, a one-step electrophoretic deposition of polyviologen (PV)/graphene-oxide (GO) aqueous composites onto a flexible mesh of 60 µm thick wires, 100 µm apart, is described. Notably, during electrodeposition, GO is transformed into conductive reduced GO (rGO), and nanoscopic pores are formed by self-assembly allowing charge/discharge of the redox sites over dozens of micrometers. Typically, electrodeposition of PV alone on a flat CC (FCC) is limited by its electrically insulating structure to ≈0.15 mAh cm-2 , but the presence of rGO allows thicker active layers without loss in (dis-)charging kinetics and reaching areal capacities of ≈2 mAh cm-2 . Remarkably, when the FCC is replaced by a mesh, the deposition of significantly more anode materials (≈5 mAh cm-2 ) is possible, while the (dis-)charging kinetics is considerably improved. It exhibits high capacity retention at an ultrafast rate of 100 C (<3%) and excellent bending stabilities. This represents the first combination of a microscopic-CC (mesh wires) with a molecular-electronic and -ionic conductor (rGO with its pores), i.e., a hierarchical-CC system with maximized polymer thickness and minimized wire thickness. The stacking of such modified grids paves the road to further increase the areal capacity.
RESUMO
Iron chronically limits aquatic photosynthesis, especially in marine environments, and the correct perception and maintenance of iron homeostasis in photosynthetic bacteria, including cyanobacteria, is therefore of global significance. Multiple adaptive mechanisms, responsive promoters, and posttranscriptional regulators have been identified, which allow cyanobacteria to respond to changing iron concentrations. However, many factors remain unclear, in particular, how iron status is perceived within the cell. Here we describe a cyanobacterial ferredoxin (Fed2), with a unique C-terminal extension, that acts as a player in iron perception. Fed2 homologs are highly conserved in photosynthetic organisms from cyanobacteria to higher plants, and, although they belong to the plant type ferredoxin family of [2Fe-2S] photosynthetic electron carriers, they are not involved in photosynthetic electron transport. As deletion of fed2 appears lethal, we developed a C-terminal truncation system to attenuate protein function. Disturbed Fed2 function resulted in decreased chlorophyll accumulation, and this was exaggerated in iron-depleted medium, where different truncations led to either exaggerated or weaker responses to low iron. Despite this, iron concentrations remained the same, or were elevated in all truncation mutants. Further analysis established that, when Fed2 function was perturbed, the classical iron limitation marker IsiA failed to accumulate at transcript and protein levels. By contrast, abundance of IsiB, which shares an operon with isiA, was unaffected by loss of Fed2 function, pinpointing the site of Fed2 action in iron perception to the level of posttranscriptional regulation.
Assuntos
Ferredoxinas/fisiologia , Ferro/metabolismo , Fotossíntese/fisiologia , Synechocystis/fisiologia , Adaptação Fisiológica , Clorofila/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Homeostase/genética , Synechocystis/genética , Synechocystis/metabolismoRESUMO
The first all-metallocene rechargeable battery consisting of poly-cobaltocenium/- and poly-ferrocene/reduced graphene oxide composites as anode and cathode was prepared. The intrinsically fast ET self-exchange rate of metallocenes was successfully combined with an efficient ion-percolation achieved by molecular self-assembly. The resulting battery materials show ideal Nernstian behavior, is thickness scalable up to >1.2â C cm-2 , and exhibit high coulombic efficiency at ultrafast rates (200â A g-1 ). Using aqueous LiClO4 , the charge is carried exclusively by the anion. The ClO4 - intercalation is accompanied by a reciprocal height change of the active layers. Principally, volume changes in organic battery materials during charging/discharging are not desirable and represent a major safety issue. However, here, the individual height changes-due to ion breathing-are reciprocal and thus prohibiting any internal pressure build-up in the closed-cell, leading to excellent cycling stability.
RESUMO
The synthesis of two types of viologen dendrimers with peripheral carboxyl groups is described. Their interaction with plasmid DNA and CT-DNA and the influence of time evolution and electrolyte on dendriplex formation have been electrochemically investigated. A negative potential shift appearing in the cyclic voltammograms of the dendrimers indicates dendriplex formation on the time scale of 15 to 19 minutes, i.e. similar to those determined empirically for other dendrimer types. The presence or absence of the negative potential shift can be used to check the stability towards sodium chloride and different cell growth media directing to sucrose for cell incubation experiments. The electrolyte content of commercially available cell growth media inhibits the dendriplex formation in solution prior to plasmid addition. Furthermore, a low salt stability of 20 mM sodium chloride for viologen dendriplexes has been confirmed, also recommending the use of lysosomotropic sucrose. The two types of viologen dendrimers have been combined with two plasmids differing in the number of base pairs. Four immortal cell lines have been tested to check the suitability of viologen dendriplexes as gene delivery systems. Probably due to the absence of terminal amino groups and endosomolytic substances only a small transfection efficiency of dendriplexes was achieved at low pH, generally excluding in vivo applications. With the larger pHSV-eGFP plasmid (5743 bp) no transfected cells were observed indicating a preference for shorter plasmids.
Assuntos
DNA/administração & dosagem , Dendrímeros/química , Plasmídeos/administração & dosagem , Transfecção , Viologênios/química , Animais , Células CHO , Bovinos , Linhagem Celular , Cricetulus , DNA/metabolismo , Dendrímeros/metabolismo , Humanos , Plasmídeos/metabolismo , Viologênios/metabolismoRESUMO
At variance with previously known coordination compounds, the polyoxometalate (POM)-embedded Zr(IV) and Hf(IV) peroxides with formula: [M(2)(O(2))(2)(α-XW(11)O(39))(2)](12-) (M=Zr(IV), X=Si (1), Ge (2); M=Hf(IV), X=Si (3)) and [M(6)(O(2))(6)(OH)(6)(γ-SiW(10)O(36))(3)](18-) (M=Zr(IV) (4) or Hf(IV) (5)) are capable of oxygen transfer to suitable acceptors including sulfides and sulfoxides in water. Combined (1)H NMR and electrochemical studies allow monitoring of the reaction under both stoichiometric and catalytic conditions. The reactivity of peroxo-POMs 1-5 is compared on the basis of substrate conversion and kinetic. The results show that the reactivity of POMs 1-3 outperforms that of the trimeric derivatives 4 and 5 by two orders of magnitude. Reversible peroxidation of 1-3 occurs by H(2)O(2) addition to the spent catalysts, restoring oxidation rates and performance of the pristine system. The stability of 1-3 under catalytic regime has been confirmed by FT-IR, UV/Vis, and resonance Raman spectroscopy. The reaction scope has been extended to alcohols, leading to the corresponding carbonyl compounds with yields up to 99% under microwave (MW) irradiation. DFT calculations revealed that polyanions 1-3 have high-energy peroxo HOMOs, and a remarkable electron density localized on the peroxo sites as indicated by the calculated map of the electrostatic potential (MEP). This evidence suggests that the overall description of the oxygen-transfer mechanism should include possible protonation equilibria in water, favored for peroxo-POMs 1-3.
RESUMO
A family of dimeric, peroxo-containing heteropolytungstates, [M(2)(O(2))(2)(XW(11)O(39))(2)](12-) [M = Zr(4+), X = Si (1), Ge (2); M = Hf(4+), X = Si (3)], have been synthesized by reacting ZrCl(4)/HfCl(4) with the respective monolacunary Keggin precursor [XW(11)O(39)](8-) (X = Si, Ge) in an aqueous acidic medium (pH 4.8). The isostructural polyanions 1-3 are composed of two (XW(11)O(39)) Keggin units encapsulating a central diperoxo-dimetal fragment {M(2)(O(2))(2)}(4+) (M = Zr(4+), Hf(4+)). Cyclic voltammetry and exhaustive electrolysis studies indicate fast reductive release of the peroxo ligands upon reduction of 1-3. Stoichiometric oxo-transfer studies from 1-3 to the substrate l-methionine were performed, and the reactions were monitored by (1)H NMR.
RESUMO
Two types of TiO(2) are used as mesoporous scaffolds, one (i) randomly sintered yielding an average pore size of 15-20 nm including bottlenecks of 1-3 nm (s-TiO(2)), the other (ii) prepared by evaporation-induced self-assembly with a pore size of 7-9 nm (t-TiO(2)). The pore walls of these materials were post-grafted with phosphonic acids bearing one or two pyridinium or sulfonate head groups via 6, 10 or 14 methylene groups, in order to tune the free pore diameter and the surface charge over a broad range. The modification was characterized by FTIR spectroscopy. Charge transport through the modified pores was investigated by cyclic voltammetry using [Fe(CN)(6)](4-/3-), [IrCl(6)](2-/3-) [Ru(NH(3))(6)](3+/2+), and (ferrocenylmethyl)trimethylammonium as electroactive tracer ions and La(3+) or naphthalene trisulfonate as non-electroactive species. The Faradaic current through the pores is controlled by the combination of surface charge, tracer ion charge, charge of the non-electroactive ions present, as well as the pore diameter. High currents due to strong preconcentration are observed, e.g. a partitioning coefficient value of 7 x 10(3) for [Fe(CN)(6)](4-/3-) on a modified electrode making it a candidate for ion-exchange voltammetry. Other phenomena presented are: (i) electrostatic closure of the porous system due to overlapping Debye layers, (ii) charge inversion of the pore walls, and (iii) the mode of charge propagation along the pore walls. Interestingly s-TiO(2) is more effective at building up an electrostatic barrier compared to t-TiO(2), probably because of narrow bottlenecks which interconnect the pores in s-TiO(2) only.
RESUMO
Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) (NP) molecular monolayers is studied by a combination of electrochemistry, infrared spectroscopy, and mass spectrometry under light irradiation at temperatures of 80 K and 294 K. The NP molecular monolayers were electrostatically attached to thin films of mesoporous TiO(2) deposited on silicon. Irradiation of the surfaces results in NO and CN release, which is verified using mass spectrometry. The kinetic trace of the light driven NO release of the [Fe(CN)(5)NO](2-) is determined by inspection of the nu(NO) stretching mode as a function of exposure to light in the violet/green spectral range. The decrease of the nu(NO)-amplitude can be modeled considering the NO release as a two-step process with an intermediate state between the attached and the released state. According to literature, the intermediate state may be related to the light-induced linkage NO isomerization of the NP.
RESUMO
Self-propelled micro- and nanomachines are at the forefront of materials research, branching into applications in biomedical science and environmental remediation. Cationic frameworks enabling the collection and delivery of anionic species (A-) are highly required, due to the large variety of life-threatening pollutants, such as radioactive technetium and carcinogenic chromium, and medicines, such as dexamethasone derivatives with negative charges. However, such autonomous moving carriers for active transport of the anions have been barely discussed. A polymeric viologen (PV++)-consisting of electroactive bicationic subunits-is utilized in a tubular autonomous microswimmer to selectively deliver A- of different sizes and charge densities. The cargo loading is based on a facile anion exchange mechanism. The packed crystal structure of PV++ allows removal of an exceptionally high quantity of anions per one microswimmer (2.55 × 10-13 mol anions per microswimmer), a critical factor often neglected regarding the real-world application of microswimmers. Notably, there was virtually no leakage of anions during the delivery process or upon keeping the loaded microswimmers under ambient conditions for at least 4 months. Multiple release mechanisms, compatible with different environments, including electrochemical, photochemical, and a metathesis reaction, with high efficiencies up to 98% are introduced. Such functional autonomous micromachines provide great promise for the next generation of functional materials for biomedical and environmental applications.
Assuntos
Cromo/análise , Dexametasona/análise , Níquel/química , Platina/química , Polímeros/química , Tecnécio/análise , Viologênios/química , Ânions/análise , Técnicas Eletroquímicas , Estrutura Molecular , Tamanho da Partícula , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de SuperfícieRESUMO
Fast switching 'transparent-to-black' electrochromic devices are currently under investigation as potential candidates in modern applications like e-papers or with additional functionality as ultracompact iris or switchable neutral filter in camera systems. However, recent electrochromic devices show either a lack of contrast or slow response times. To overcome these deficiencies we focus on a careful material composition of the colouring hybrid electrodes in our device. We have established a nanoporous Sb-doped SnO[Formula: see text] electrode as supporting electrode for chemisorbed electrochromic tetraphenylbenzidine molecules due to its good conductivity in the redox potential range of the molecule. This hybrid electrode was combined with a modified nanoporous TiO[Formula: see text] / viologen electrode to realize a high performance, complementary electrochromic device. Fast switching time constants of 0.5 s and concurrently high change in optical density [Formula: see text]OD = 2.04 at 605 nm confirm our successful concept. The achieved colouration efficiency of 440 cm[Formula: see text] C[Formula: see text] exceeds every high contrast device presented so far.
RESUMO
We have synthesized and structurally characterized the unprecedented peroxo-zirconium(IV) containing [Zr6(O2)6(OH)6(gamma-SiW10O36)3]18- (1). Polyanion 1 comprises a cyclic 6-peroxo-6-zirconium core stabilized by three decatungstosilicate units. We have also prepared the isostructural hafnium(IV) analogue [Hf6(O2)6(OH)6(gamma-SiW10O36)3]18- (2). We investigated the acid/base and redox properties of 1 by UV-vis spectroscopy and electrochemistry studies. Polyanion 1 represents the first structurally characterized Zr-peroxo POM with side-on, bridging peroxo units. The simple, one-pot synthesis of 1 and 2 involving dropwise addition of aqueous hydrogen peroxide could represent a general procedure for incorporating peroxo groups into a large variety of transition metal and lanthanide containing POMs.
RESUMO
Insect-inspired capillary submicron stamping and subsequent surface-limited metal-assisted chemical etching (MACE) with ammonium bifluoride as a HF source are employed for the high-throughput production of ordered topographically patterned silicon (tpSi). Insect feet often possess hairy contact elements through which adhesive secretion is deployed. Thus, arrays of adhesive secretion drops remain as footprints on contact surfaces. Stamps for insect-inspired capillary submicron stamping having surfaces topographically patterned with contact elements mimic the functional principles of such insect feet. They contain spongy continuous nanopore networks penetrating the entire stamps. Any ink (organic or aqueous) may be supplied from the backside of the nanoporous stamps to the contact elements. We generated ordered arrays of submicron AgNO3 dots extending square millimeters on Si by manual stamping with cycle times of a few seconds under ambient conditions; at higher load, ordered holey AgNO3 films were obtained. Surface-limited MACE correspondingly yielded either macroporous tpSi or Si pillar arrays. Inkjet printing of polymer solutions onto the tpSi yielded patterns of polymer blots conformally covering the tpSi. Such blot patterns could potentially represent a starting point for the development of persistent and scratch-resistant identity labels or quick response codes on silicon surfaces.
Assuntos
Silício/química , Polímeros , Impressão , Silício/uso terapêuticoRESUMO
Four linear poly(viologens) (PV1, PV2: phenylic, PV3: benzylic, and PV4: aliphatic) in tight molecular contact with reduced graphene oxide (rGO), that is, PV@rGO, were prepared and used as anodic battery materials. These composites show exceptionally high, areal, volumetric, and current densities, for example, PV1@rGO composites (with 15 wt % rGO, corresponding to 137 mAh g-1) show 13.3 mAh cm-2 at 460 µm and 288 mAh cm-3 with 98% Coulombic efficiency at current densities up to 1000 A g-1, better than any reported organic materials. These remarkable performances are based on (i) molecular self-assembling of PVs on individual GO sheets yielding colloidal PV@GO and (ii) efficient GO/rGO transformation electrocatalyzed by PVs. Ion breathing during charging/discharging was studied by electrochemical quartz crystal microbalance and electrochemical atomic force microscopy revealing an absolute reversible and strongly anisotropic thickness oscillation of PV1@rGO at a right angle to the macroscopic current collector. It is proposed that such stress-free breathing is the key property for good cyclability of the battery material. The anisotropy is related to a puff paste architecture of rGO sheets parallel to the macroscopic current collector. A thin graphite sheet electrode with an areal capacity of 1.23 mAh cm-2 is stable over 200 bending cycles, making the material applicable for wearable electronics. The polymer acts as a lubricant between the rGO layers if shearing forces are active.
RESUMO
The surface of steel S235 was oxidized by Cl2 gas and checked for its electrocatalytic efficiency regarding oxygen formation in aqueous solution. If exposed to humid Cl2 gas for 110â min, steel S235 became an electrocatalyst that exhibits an overpotential for the oxygen evolution reaction (OER) of 462â mV at 1â mA cm(-2) at pHâ 7. The OER activity of the same sample at pHâ 13 was moderate (347â mV overpotential at 2.0â mA cm(-2) current density) in comparison with OER electrocatalysts developed recently. Potential versus time plots measured at a constant current demonstrate the sufficient stability of all samples under catalysis conditions at pHâ 7 and 13 for tens of hours. High-resolution X-ray photoelectron spectra could be reasonably resolved with the proviso that Fe2 O3 , FeO(OH), MnO(OH), and Mn2 O3 are the predominant Fe and Mn species on the surface of the oxidized steel S235.
RESUMO
We report the high-throughput fabrication of transparent elastomeric monoliths containing customized micropatterns of microcapsules, which might be used as highly flexible identity tags, sensor elements, and photochromic, photonic, or phononic systems. High-throughput replication molding of microsphere monolayers used as sacrificial primary templates via negative secondary replicas and positive tertiary replicas yielded elastomeric specimens containing dense hexagonal arrays of open spherical microcavities. In a subsequent inkjet printing step, some of the open-spherical microcavities were filled with functional materials such as dyes. The subsequent addition of an elastomeric cover layer led to encapsulation of the dyes trapped in the printed microcavities, while empty microcavities were filled with elastomer and vanished.
RESUMO
Alkyl phosphonic acids (Pho-C(n)-R) of different chain length (6, 10, and 14 carbons) bearing neutral, positive, and negatively charged head groups (R = -H, R(-) = sulfonate, R(+) = pyridinium) were prepared and anchored to the inner walls of randomly sintered mesoporous TiO(2) thin films. Quartz crystal microbalance (QCM) and Fourier transform infrared (FT-IR) measurements show that a monolayer coverage was achieved. The monolayer crystallinity is lower as compared to alkyl thiols on gold, but it increases with the length of the carbon chain. The neutral phosphonic acid modifier makes the TiO(2) highly hydrophobic and suppresses electrochemistry in aqueous media, and the alkyl phosphonic acids with charged head groups render the TiO(2) film as an ion exchanger with a phase separated hydrophilic and hydrophobic portion. Different charged guest molecules were incorporated on top or into the supported membranes. The host-guest interactions were found to be electrostatic, hydrophobic, or both. Highly charged electroactive metal complexes ([Fe(CN)(6)](4-), [IrCl(6)](2-)) and purpose-synthesized organic electrochromophores (dialkylated viologens with variable chain length, C(1)-V(+2)-C(n), C(n)-V(+2)-C(n), n = 6, 10, and 14) were used as molecular guests, and the assemblies were characterized by cyclic voltammetry and FT-IR. Using the preconcentration phenomenon, [Fe(CN)(6)](4-) concentration as low as 200 nM can be detected on a Pho-C(14)-R(+) modified TiO(2) electrode by conventional cyclic voltammetry. The new surface modification technique simplifies the molecular requirements for functional surface modifiers considerably. Using a limited set of organic anchors with orthogonal coordination properties and adjustable hydrophobicity, a broad range of electrochromophores, redox active wiring compounds, or sensitizers can be adsorbed onto TiO(2).
RESUMO
The interaction between the tetrade-forming oligonucleotide 5'-d(T 4G 4T 4) and monoalkylated bipyridinium salts, such as 1-ethyl-4-pyridin-4-ylpyridinium bromide, is reported. The oligomer forms tetrades in the presence of K+ ions but not with Li+. Additionally, the interaction of the thrombin-binding aptamer 5'-d(GGTTGGTGTGGTTGG) (TBA) with a dialkylated bipyridinium salt, viologen, was studied by cyclic voltammetry. This was performed either on a TiO2 electrode, derivatized with 3-aminopropyltriethoxysilane (APS), using [Fe(CN)6](4-) as a marker ion or without a marker ion on an electrostatically TiO2-bound amino-ferrocenyl derivative. Both experiments proof a strong interaction between the immobilized aptamer and the viologen. Third, the electrochemical response of the specific thrombin binding to the immobilized aptamer was studied.
Assuntos
Aptâmeros de Nucleotídeos/química , Oligodesoxirribonucleotídeos/química , Viologênios/química , Eletroquímica/métodos , Lítio/química , Potássio/química , Trombina/químicaRESUMO
Laterally structured, self-assembled monolayers (SAMs) of different thiols (HS-R-X, R = (CH 2) 3-16, X = -CH 3, -COOH, -NH 2) on gold have been prepared by inkjet printing. The printer is a modified, low-cost desktop printer (Epson Stylus Photo R200), the ink is a 1 mM solution of the thiol in ethanol/glycerol (6:1). The quality of inkjet-printed large area SAMs obtained in this study is between that of a layer self-assembled from a thiol solution and that obtained by soft lithography, according to cyclic voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy (SECM), and polarization-modulated Fourier transform infrared reflection-absorption spectroscopy (PM IRRAS). For the first time, simultaneous printing of two different thiols in a single print job as an alternative to sequential printing and backfilling is demonstrated. The smallest structures consisting of conductive disks of 40 microm diameter were analyzed as single spots by SECM and as random array electrodes with different average disk-disk distance. Conductive band electrodes with variable bandwidth (300 microm to 1 cm) are presented, as well as a pH switchable band structure. As compared to stamping, inkjet printing allows for simultaneous multiple thiol printing in a single print job with the resolution limited only by the droplet size and the precision of the translation stage.
RESUMO
The modification of mesoporous TiO2 film electrodes with vitamin B12 derivatives (e.g., 1, 2, or 3) yields electrodes with interesting sensing and electrocatalytic properties. So far, only coordinative bonding between the B12 derivatives and the metal oxide surface was used, and B12 was lost under conditions of extended electrocatalysis [1. Schulthess, P.; Ammann, D.; Simon, W.; Caderas, C.; Stepanek, R.; Krautler, B. Helv. Chim. Acta 1984, 67 (4), 1026-1032. 2. Mayor, M.; Scheffold, R.; Walder, L. Helv. Chim. Acta 1997, 80 (4), 1183-1189. 3. Stepanek, R. Ph.D.; ETH: Zürich, 1987]. (1-3) We report here on a procedure that yields highly improved stabilities of the electrocatalysts toward reductive expulsion from the mesopores. It is based on cross-linking the B12 derivatives (4 or 5) equipped with multiple reaction sites in the TiO2 mesopores. The cross-linkers are multiple functionalized, one of them assisting the electron transfer from TiO2 to the Co centers via redox shuttling. The modified electrodes show high electrocatalytic reactivity toward organic halides and highly improved stability.
Assuntos
Eletrodos , Titânio/química , Vitamina B 12/química , Catálise , Materiais Revestidos Biocompatíveis/química , Reagentes de Ligações Cruzadas , Eletroquímica , Eletrólise , Teste de Materiais , Propriedades de SuperfícieRESUMO
The mechanism of charge propagation in "ion channel sensors" (ICSs) consisting of gold electrodes modified with a layer of charged proteins and highly charged redox-active marker ions in solution was investigated by electrochemical techniques, QCM and AFM. The study is based on seven proteins (concanavalin A, cytochrome c, glucose oxidase, lysozyme, thyroglobulin, catalase, aldolase, and EF1-ATPase) in combination with seven electroactive marker ions ([Fe(CN)6]3-, [Fe(CN)6]4-, [Ru(NH3)6]3+, mono-, di-, and trimeric viologens), as well as a series of suppressor and enhancer ions leading to the following general statements: (i) electrostatic binding of charged marker ions to the domains of the protein is a prerequisite for an electrochemical current and (ii) charge propagation through the layer consists of electron hopping along surface-confined marker ions into the pores between adsorbed proteins. It is further shown that (iii) marker ions and suppressor ions with identical charge compete for oppositely charged sites on the protein domain, (iv) electrostatically bound multilayers of marker or enhancer ions with alternating charge form on a charged protein domain, and (v) self-exchange and exergonic ET catalysis between adsorbed marker ions and marker ions in solution take place. In addition to fundamental insight into the mechanism of charge propagation, valuable information for the design, optimization, and tailoring of new biosensors based on the ICS concept is demonstrated by the current findings.