RESUMO
In the original article a Note added in proof was not included. This has now been amended.
RESUMO
Autophagy is a conserved process that catabolizes intracellular components to maintain energy homeostasis and to protect cells against stress. Autophagy has crucial roles during development and disease, and evidence accumulated over the past decade indicates that autophagy also has a direct role in modulating ageing. In particular, elegant studies using yeasts, worms, flies and mice have demonstrated a broad requirement for autophagy-related genes in the lifespan extension observed in a number of conserved longevity paradigms. Moreover, several new and interesting concepts relevant to autophagy and its role in modulating longevity have emerged. First, select tissues may require or benefit from autophagy activation in longevity paradigms, as tissue-specific overexpression of single autophagy genes is sufficient to extend lifespan. Second, selective types of autophagy may be crucial for longevity by specifically targeting dysfunctional cellular components and preventing their accumulation. And third, autophagy can influence organismal health and ageing even non-cell autonomously, and thus, autophagy stimulation in select tissues can have beneficial, systemic effects on lifespan. Understanding these mechanisms will be important for the development of approaches to improve human healthspan that are based on the modulation of autophagy.
RESUMO
Infections disturb metabolic homeostasis in many contexts, but the underlying connections are not completely understood. To address this, we use paired genetic and computational screens in Drosophila to identify transcriptional regulators of immunity and pathology and their associated target genes and physiologies. We show that Mef2 is required in the fat body for anabolic function and the immune response. Using genetic and biochemical approaches, we find that MEF2 is phosphorylated at a conserved site in healthy flies and promotes expression of lipogenic and glycogenic enzymes. Upon infection, this phosphorylation is lost, and the activity of MEF2 changes--MEF2 now associates with the TATA binding protein to bind a distinct TATA box sequence and promote antimicrobial peptide expression. The loss of phosphorylated MEF2 contributes to loss of anabolic enzyme expression in Gram-negative bacterial infection. MEF2 is thus a critical transcriptional switch in the adult fat body between metabolism and immunity.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Fatores de Regulação Miogênica/metabolismo , Sequência de Aminoácidos , Animais , Candida albicans , Proteínas de Drosophila/imunologia , Drosophila melanogaster/microbiologia , Enterobacter cloacae , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica , Glicogênio/metabolismo , Metabolismo , Mycobacterium marinum , Fatores de Regulação Miogênica/imunologia , Fosforilação , Proteína de Ligação a TATA-Box/metabolismoRESUMO
Intrauterine growth restriction (IUGR) is a pregnancy complication impairing fetal growth and development. The compromised development is often attributed to disruptions of oxygen and nutrient supply from the placenta, resulting in a number of unfavourable physiological outcomes with impaired brain and organ growth. IUGR is associated with compromised development of both grey and white matter, predisposing the infant to adverse neurodevelopmental outcomes, including long-lasting cognitive and motor difficulties. Cerebral thyroid hormone (TH) signalling, which plays a crucial role in regulating white and grey matter development, is dysregulated in IUGR, potentially contributing to the neurodevelopmental delays associated with this condition. Notably, one of the major TH transporters, monocarboxylate transporter-8 (MCT8), is deficient in the fetal IUGR brain. Currently, no effective treatment to prevent or reverse IUGR exists. Management strategies involve close antenatal monitoring, management of maternal risk factors if present and early delivery if IUGR is found to be severe or worsening in utero. The overall goal is to determine the most appropriate time for delivery, balancing the risks of preterm birth with further fetal compromise due to IUGR. Drug candidates have shown either adverse effects or little to no benefits in this vulnerable population, urging further preclinical and clinical investigation to establish effective therapies. In this review, we discuss the major neuropathology of IUGR driven by uteroplacental insufficiency and the concomitant long-term neurobehavioural impairments in individuals born IUGR. Importantly, we review the existing clinical and preclinical literature on cerebral TH signalling deficits, particularly the impaired expression of MCT8 and their correlation with IUGR. Lastly, we discuss the current evidence on MCT8-independent TH analogues which mimic the brain actions of THs by being metabolised in a similar manner as promising, albeit underappreciated approaches to promote grey and white matter development and improve the neurobehavioural outcomes following IUGR.
Assuntos
Retardo do Crescimento Fetal , Hormônios Tireóideos , Humanos , Retardo do Crescimento Fetal/tratamento farmacológico , Animais , Hormônios Tireóideos/uso terapêutico , Hormônios Tireóideos/metabolismo , Gravidez , Feminino , Transtornos do Neurodesenvolvimento/prevenção & controle , Transtornos do Neurodesenvolvimento/etiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidoresRESUMO
BACKGROUND: Intrauterine inflammation is considered a major cause of brain injury in preterm infants, leading to long-term neurodevelopmental deficits. A potential contributor to this brain injury is dysregulation of neurovascular coupling. We have shown that intrauterine inflammation induced by intra-amniotic lipopolysaccharide (LPS) in preterm lambs, and postnatal dopamine administration, disrupts neurovascular coupling and the functional cerebral haemodynamic responses, potentially leading to impaired brain development. In this study, we aimed to characterise the structural changes of the neurovascular unit following intrauterine LPS exposure and postnatal dopamine administration in the brain of preterm lambs using cellular and molecular analyses. METHODS: At 119-120 days of gestation (term = 147 days), LPS was administered into the amniotic sac in pregnant ewes. At 126-7 days of gestation, the LPS-exposed lambs were delivered, ventilated and given either a continuous intravenous infusion of dopamine at 10 µg/kg/min or isovolumetric vehicle solution for 90 min (LPS, n = 6; LPSDA, n = 6). Control preterm lambs not exposed to LPS were also administered vehicle or dopamine (CTL, n = 9; CTLDA, n = 7). Post-mortem brain tissue was collected 3-4 h after birth for immunohistochemistry and RT-qPCR analysis of components of the neurovascular unit. RESULTS: LPS exposure increased vascular leakage in the presence of increased vascular density and remodelling with increased astrocyte "end feet" vessel coverage, together with downregulated mRNA levels of the tight junction proteins Claudin-1 and Occludin. Dopamine administration decreased vessel density and size, decreased endothelial glucose transporter, reduced neuronal dendritic coverage, increased cell proliferation within vessel walls, and increased pericyte vascular coverage particularly within the cortical and deep grey matter. Dopamine also downregulated VEGFA and Occludin tight junction mRNA, and upregulated dopamine receptor DRD1 and oxidative protein (NOX1, SOD3) mRNA levels. Dopamine administration following LPS exposure did not exacerbate any effects induced by LPS. CONCLUSION: LPS exposure and dopamine administration independently alters the neurovascular unit in the preterm brain. Alterations to the neurovascular unit may predispose the developing brain to further injury.
Assuntos
Animais Recém-Nascidos , Dopamina , Lipopolissacarídeos , Animais , Dopamina/metabolismo , Ovinos , Feminino , Lipopolissacarídeos/toxicidade , Gravidez , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/patologiaRESUMO
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Assuntos
Retardo do Crescimento Fetal , Placenta , Recém-Nascido , Gravidez , Feminino , Humanos , Tronco Encefálico , Pulmão , HipóxiaRESUMO
Fetal growth restriction (FGR) is associated with cardiovascular and respiratory complications after birth and beyond. Despite research showing a range of neurological changes following FGR, little is known about how FGR affects the brainstem cardiorespiratory control centres. The primary neurons that release serotonin reside in the brainstem cardiorespiratory control centres and may be affected by FGR. At two time points in the last trimester of sheep brain development, 110 and 127 days of gestation (0.74 and 0.86 of gestation), we assessed histopathological alterations in the brainstem cardiorespiratory control centres of the pons and medulla in early-onset FGR versus control fetal sheep. The FGR cohort were hypoxaemic and asymmetrically growth restricted. Compared to the controls, the brainstem of FGR fetuses exhibited signs of neuropathology, including elevated cell death and reduced cell proliferation, grey and white matter deficits, and evidence of oxidative stress and neuroinflammation. FGR brainstem pathology was predominantly observed in the medullary raphé nuclei, hypoglossal nucleus, nucleus ambiguous, solitary tract and nucleus of the solitary tract. The FGR groups showed imbalanced brainstem serotonin and serotonin 1A receptor abundance in the medullary raphé nuclei, despite evidence of increased serotonin staining within vascular regions of placentomes collected from FGR fetuses. Our findings demonstrate both early and adaptive brainstem neuropathology in response to placental insufficiency. KEY POINTS: Early-onset fetal growth restriction (FGR) was induced in fetal sheep, resulting in chronic fetal hypoxaemia. Growth-restricted fetuses exhibit persistent neuropathology in brainstem nuclei, characterised by disrupted cell proliferation and reduced neuronal cell number within critical centres responsible for the regulation of cardiovascular and respiratory functions. Elevated brainstem inflammation and oxidative stress suggest potential mechanisms contributing to the observed neuropathological changes. Both placental and brainstem levels of 5-HT were found to be impaired following FGR.
RESUMO
OBJECTIVE: Seizures are more common in the neonatal period than at any other stage of life. Phenobarbital is the first-line treatment for neonatal seizures and is at best effective in approximately 50% of babies, but may contribute to neuronal injury. Here, we assessed the efficacy of phenobarbital versus the synthetic neurosteroid, ganaxolone, to moderate seizure activity and neuropathology in neonatal lambs exposed to perinatal asphyxia. METHODS: Asphyxia was induced via umbilical cord occlusion in term lambs at birth. Lambs were treated with ganaxolone (5mg/kg/bolus then 5mg/kg/day for 2 days) or phenobarbital (20mg/kg/bolus then 5mg/kg/day for 2 days) at 6 hours. Abnormal brain activity was classified as stereotypic evolving (SE) seizures, epileptiform discharges (EDs), and epileptiform transients (ETs) using continuous amplitude-integrated electroencephalographic recordings. At 48 hours, lambs were euthanized for brain pathology. RESULTS: Asphyxia caused abnormal brain activity, including SE seizures that peaked at 18 to 20 hours, EDs, and ETs, and induced neuronal degeneration and neuroinflammation. Ganaxolone treatment was associated with an 86.4% reduction in the number of seizures compared to the asphyxia group. The total seizure duration in the asphyxia+ganaxolone group was less than the untreated asphyxia group. There was no difference in the number of SE seizures between the asphyxia and asphyxia+phenobarbital groups or duration of SE seizures. Ganaxolone treatment, but not phenobarbital, reduced neuronal degeneration within hippocampal CA1 and CA3 regions, and cortical neurons, and ganaxolone reduced neuroinflammation within the thalamus. INTERPRETATION: Ganaxolone provided better seizure control than phenobarbital in this perinatal asphyxia model and was neuroprotective for the newborn brain, affording a new therapeutic opportunity for treatment of neonatal seizures. ANN NEUROL 2022;92:1066-1079.
Assuntos
Asfixia Neonatal , Epilepsia , Pregnanolona , Animais , Humanos , Recém-Nascido , Anticonvulsivantes/uso terapêutico , Asfixia Neonatal/complicações , Asfixia Neonatal/tratamento farmacológico , Epilepsia/tratamento farmacológico , Fenobarbital/uso terapêutico , Convulsões/tratamento farmacológico , Ovinos , Animais Recém-Nascidos , Modelos Animais de DoençasRESUMO
Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real-time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days' gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling. Creatine (6 mg kg-1 h-1 ) or saline was continuously infused intravenously from 122 dGA. At 131 dGA, a 10 min UCO was induced. Hourly microdialysis samples were obtained from -24 to 72 h post-UCO and analysed for percentage change of hydroxyl radicals (⢠OH) and interstitial metabolites (lactate, pyruvate, glutamate, glycerol, glycine). Histochemical markers of protein and lipid oxidation were assessed at post-mortem 72 h post-UCO. Prior to UCO, creatine treatment reduced pyruvate and glycerol concentrations in the microdialysate outflow. Creatine treatment reduced interstitial cerebral ⢠OH outflow 0 to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO presented with reduced levels of hypoxaemia ( PO2${P_{{{\rm{O}}_{\rm{2}}}}}$ and SO2${S_{{{\rm{O}}_{\rm{2}}}}}$ ) during UCO which associated with reduced interstitial cerebral pyruvate, lactate and ⢠OH accumulation. No effects of creatine treatment on immunohistochemical markers of oxidative stress were found. In conclusion, fetal creatine treatment decreased cerebral outflow of ⢠OH and was associated with an improvement in cerebral bioenergetics following acute hypoxia. KEY POINTS: Fetal hypoxia can cause persistent metabolic and oxidative stress responses that disturb energy homeostasis in the brain. Creatine in its phosphorylated form is an endogenous phosphagen; therefore, supplementation is a proposed prophylactic treatment for fetal hypoxia. Fetal sheep instrumented with a cerebral microdialysis probe were continuously infused with or without creatine-monohydrate for 10 days before induction of 10 min umbilical cord occlusion (UCO; 131 days' gestation). Cerebral interstitial fluid was collected up to 72 h following UCO. Prior to UCO, fetal creatine supplementation reduced interstitial cerebral pyruvate and glycerol concentrations. Fetal creatine supplementation reduced cerebral hydroxyl radical efflux up to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO and reduced levels of systemic hypoxaemia during UCO were associated with reduced cerebral interstitial pyruvate, lactate and ⢠OH following UCO. Creatine supplementation leads to some improvements in cerebral bioenergetics following in utero acute hypoxia.
Assuntos
Creatina , Hipóxia Fetal , Animais , Creatina/metabolismo , Creatina/farmacologia , Suplementos Nutricionais , Feminino , Hipóxia Fetal/metabolismo , Feto/metabolismo , Glicerol/metabolismo , Humanos , Hipóxia/metabolismo , Lactatos , Estresse Oxidativo , Gravidez , Piruvatos/metabolismo , Ovinos , Cordão Umbilical/fisiologiaRESUMO
KEY POINTS: Brief episodes of severe fetal hypoxia can arise in late gestation as a result of interruption of normal umbilical blood flow Systemic parameters and blood chemistry indicate complete recovery within 1-2 hours, although the long-term effects on fetal brain functions are unknown Fetal sheep were subjected to umbilical cord occlusion (UCO) for 10 min at 131 days of gestation, and then monitored intensively until onset of labour or delivery (<145 days of gestation) Normal patterns of fetal behaviour, including breathing movements, episodes of high and low voltage electorcortical activity, eye movements and postural (neck) muscle activity, were disrupted for 3-10 days after the UCO Preterm labour and delivery occurred in a significant number of the pregnancies after UCO compared to the control (sham-UCO) cohort. ABSTRACT: Complications arising from antepartum events such as impaired umbilical blood flow can cause significant fetal hypoxia. These complications can be unpredictable, as well as difficult to detect, and thus we lack a detailed understanding of the (patho)physiological changes that occur between the antenatal in utero event and birth. In the present study, we assessed the consequences of brief (â¼10 min) umbilical cord occlusion (UCO) in fetal sheep at â¼0.88 gestation on fetal plasma cortisol concentrations and fetal behaviour [electrocortical (EcoG), electo-oculargram (EOG), nuchal muscle electromyography (EMG) and breathing activities] in the days following UCO. UCO caused a rapid onset of fetal hypoxaemia, hypercapnia, and acidosis; however, by 6 h, all blood parameters and cardiovascular status were normalized and not different from the control (Sham-UCO) cohort. Subsequently, the incidence of fetal breathing movements decreased compared to the control group, and abnormal behavioural patterns developed over the days following UCO and leading up to the onset of labour, which included increased high voltage and sub-low voltage ECoG and EOG activities, as well as decreased nuchal EMG activity. Fetuses subjected to UCO went into labour 7.9 ± 3.6 days post-UCO (139.5 ± 3.2 days of gestation) compared to the control group fetuses at 13.6 ± 3.3 days post-sham UCO (144 ± 2.2 days of gestation; P < 0.05), despite comparable increases in fetal plasma cortisol and a similar body weight at birth. Thus, a single transient episode of complete UCO late in gestation in fetal sheep can result in prolonged effects on fetal brain activity and premature labour, suggesting persisting effects on fetal cerebral metabolism.
Assuntos
Trabalho de Parto , Cordão Umbilical , Animais , Feminino , Hipóxia Fetal , Feto , Hipóxia , Gravidez , OvinosRESUMO
Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.
Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Desenvolvimento Fetal/genética , Desenvolvimento Fetal/fisiologia , Animais , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neuritos/fisiologia , OvinosRESUMO
Dehydroepiandrosterone (DHEA) and its sulfated metabolite (DHEAS) are dynamically regulated before birth and the onset of puberty. Yet, the origins and purpose of increasing DHEA[S] in postnatal development remain elusive. Here, we draw attention to this pre-pubertal surge from the adrenal gland-the adrenarche-and discuss whether this is the result of intra-adrenal gene expression specifically affecting the zona reticularis (ZR), if the ZR is influenced by the hypothalamic-pituitary axis, and the possible role of spino-sympathetic innervation in prompting increased ZR activity. We also discuss whether neural DHEA[S] synthesis is coordinately regulated with the developing adrenal gland. We propose that DHEA[S] is crucial in the brain maturation of humans prior to and during puberty, and suggest that the function of the adrenarche is to modulate, adapt and rewire the pre-adolescent brain for new and ever-changing social challenges. The etiology of DHEA[S] synthesis, neurodevelopment and recently described 11-keto and 11-oxygenated androgens are difficult to investigate in humans owing to: (i) ethical restrictions on mechanistic studies, (ii) the inability to predict which individuals will develop specific mental characteristics, and (iii) the difficulty of conducting retrospective studies based on perinatal complications. We discuss new opportunities for animal studies to overcome these important issues.
Assuntos
Adrenarca , Transtornos do Neurodesenvolvimento/fisiopatologia , Maturidade Sexual , Adolescente , Feminino , Humanos , Recém-Nascido , GravidezRESUMO
In many species of Mammalia, the surface of the brain develops from a smooth structure to one with many fissures and folds, allowing for vast expansion of the surface area of the cortex. The importance of understanding what drives cortical folding extends beyond mere curiosity, as conditions such as preterm birth, intrauterine growth restriction, and fetal alcohol syndrome are associated with impaired folding in the infant and child. Despite being a key feature of brain development, the mechanisms driving cortical folding remain largely unknown. In this review we discuss the possible role of the subplate, a developmentally transient compartment, in directing region-dependent development leading to sulcal and gyral formation. We discuss the development of the subplate in species with lissencephalic and gyrencephalic cortices, the characteristics of the cells found in the subplate, and the possible presence of molecular cues that guide axons into, and out of, the overlying and multilayered cortex before the appearance of definitive cortical folds. An understanding of what drives cortical folding is likely to help in understanding the origins of abnormal folding patterns in clinical pathologies.
Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Neurônios/fisiologia , Animais , Idade Gestacional , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/anatomia & histologia , Vias Neurais/crescimento & desenvolvimento , Tálamo/anatomia & histologia , Tálamo/crescimento & desenvolvimentoRESUMO
Creatine is a metabolite important for cellular energy homeostasis as it provides spatio-temporal adenosine triphosphate (ATP) buffering for cells with fluctuating energy demands. Here, we examined whether placental creatine metabolism was altered in cases of early-onset pre-eclampsia (PE), a condition known to cause placental metabolic dysfunction. We studied third trimester human placentae collected between 27-40 weeks' gestation from women with early-onset PE (n = 20) and gestation-matched normotensive control pregnancies (n = 20). Placental total creatine and creatine precursor guanidinoacetate (GAA) content were measured. mRNA expression of the creatine synthesizing enzymes arginine:glycine aminotransferase (GATM) and guanidinoacetate methyltransferase (GAMT), the creatine transporter (SLC6A8), and the creatine kinases (mitochondrial CKMT1A & cytosolic BBCK) was assessed. Placental protein levels of arginine:glycine aminotransferase (AGAT), GAMT, CKMT1A and BBCK were also determined. Key findings; total creatine content of PE placentae was 38% higher than controls (p < 0.01). mRNA expression of GATM (p < 0.001), GAMT (p < 0.001), SLC6A8 (p = 0.021) and BBCK (p < 0.001) was also elevated in PE placentae. No differences in GAA content, nor protein levels of AGAT, GAMT, BBCK or CKMT1A were observed between cohorts. Advancing gestation and birth weight were associated with a down-regulation in placental GATM mRNA expression, and a reduction in GAA content, in control placentae. These relationships were absent in PE cases. Our results suggest PE placentae may have an ongoing reliance on the creatine kinase circuit for maintenance of cellular energetics with increased total creatine content and transcriptional changes to creatine synthesizing enzymes and the creatine transporter. Understanding the functional consequences of these changes warrants further investigation.
Assuntos
Creatina/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteínas da Gravidez/metabolismo , Terceiro Trimestre da Gravidez/metabolismo , Feminino , Humanos , Placenta/patologia , Pré-Eclâmpsia/patologia , GravidezRESUMO
Creatine is a metabolite involved in cellular energy homeostasis. In this study, we examined placental creatine content, and expression of the enzymes required for creatine synthesis, transport and the creatine kinase reaction, in pregnancies complicated by low birthweight. We studied first trimester chorionic villus biopsies (CVBs) of small for gestational age (SGA) and appropriately grown infants (AGA), along with third trimester placental samples from fetal growth restricted (FGR) and healthy gestation-matched controls. Placental creatine and creatine precursor (guanidinoacetate-GAA) levels were measured. Maternal and cord serum from control and FGR pregnancies were also analyzed for creatine concentration. mRNA expression of the creatine transporter (SLC6A8); synthesizing enzymes arginine:glycine aminotransferase (GATM) and guanidinoacetate methyltransferase (GAMT); mitochondrial (mtCK) and cytosolic (BBCK) creatine kinases; and amino acid transporters (SLC7A1 & SLC7A2) was assessed in both CVBs and placental samples. Protein levels of AGAT (arginine:glycine aminotransferase), GAMT, mtCK and BBCK were also measured in placental samples. Key findings; total creatine content of the third trimester FGR placentae was 43% higher than controls. The increased creatine content of placental tissue was not reflected in maternal or fetal serum from FGR pregnancies. Tissue concentrations of GAA were lower in the third trimester FGR placentae compared to controls, with lower GATM and GAMT mRNA expression also observed. No differences in the mRNA expression of GATM, GAMT or SLC6A8 were observed between CVBs from SGA and AGA pregnancies. These results suggest placental creatine metabolism in FGR pregnancies is altered in late gestation. The relevance of these changes on placental bioenergetics should be the focus of future investigations.
Assuntos
Creatina/metabolismo , Guanidinoacetato N-Metiltransferase/metabolismo , Placenta/metabolismo , Placenta/fisiopatologia , Adulto , Feminino , Desenvolvimento Fetal/genética , Desenvolvimento Fetal/fisiologia , Guanidinoacetato N-Metiltransferase/genética , Humanos , Gravidez , Primeiro Trimestre da Gravidez/metabolismo , Terceiro Trimestre da Gravidez/metabolismo , RNA Mensageiro/metabolismoRESUMO
Studies in mammals, including humans, have reported age-related changes in microbiota dynamics. A major challenge, however, is to dissect the cause and effect relationships involved. Invertebrate model organisms such as the fruit fly Drosophila and the nematode Caenorhabditis elegans have been invaluable in studies of the biological mechanisms of aging. Indeed, studies in flies and worms have resulted in the identification of a number of interventions that can slow aging and prolong life span. In this review, we discuss recent work using invertebrate models to provide insight into the interplay between microbiota dynamics, intestinal homeostasis during aging and life span determination. An emerging theme from these studies is that the microbiota contributes to cellular and physiological changes in the aging intestine and, in some cases, age-related shifts in microbiota dynamics can drive health decline in aged animals.
Assuntos
Envelhecimento/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestinos/microbiologia , Longevidade/fisiologia , Animais , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/fisiologia , Drosophila/microbiologia , Drosophila/fisiologia , Humanos , Modelos AnimaisRESUMO
Good quality sleep of sufficient duration is vital for optimal physiological function and our health. Sleep deprivation is associated with impaired neurocognitive function and emotional control, and increases the risk for cardiometabolic diseases, obesity and cancer. Sleep develops during fetal life with the emergence of a recognisable pattern of sleep states in the preterm fetus associated with the development, maturation and connectivity within neural networks in the brain. Despite the physiological importance of sleep, surprisingly little is known about how sleep develops in individuals born preterm. Globally, an estimated 15 million babies are born preterm (<37 weeks gestation) each year, and these babies are at significant risk of neural injury and impaired brain development. This review discusses how sleep develops during fetal and neonatal life, how preterm birth impacts on sleep development to adulthood, and the factors which may contribute to impaired brain and sleep development, leading to altered neurocognitive, behavioural and motor capabilities in the infant and child. Going forward, the challenge is to identify specific risk factors for impaired sleep development in preterm babies to allow for the design of interventions that will improve the quality and quantity of sleep throughout life.
Assuntos
Nascimento Prematuro , Sono , Animais , Encéfalo/crescimento & desenvolvimento , HumanosRESUMO
The human brain is one of the most complex structures currently under study. Its external shape is highly convoluted, with folds and valleys over the entire surface of the cortex. Disruption of the normal pattern of folding is associated with a number of abnormal neurological outcomes, some serious for the individual. Most of our knowledge of the normal development and folding of the cerebral cortex (gyrification) focuses on the internal, biological (i.e. genetically driven) mechanisms of the brain that drive gyrification. However, the impact of an adverse intrauterine and maternal physiological environment on cortical folding during fetal development has been understudied. Accumulating evidence suggests that the state of the intrauterine and maternal environment can have a significant impact on gyrification of the fetal cerebral cortex. This review summarises our current knowledge of how development in a suboptimal intrauterine and maternal environment can affect the normal development of the folded cerebral cortex.
Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Desenvolvimento Fetal , Animais , HumanosRESUMO
This review covers our current knowledge of the causes of perinatal brain injury leading to cerebral palsy-like outcomes, and argues that much of this brain damage is preventable. We review the experimental evidence that there are treatments that can be safely administered to women in late pregnancy that decrease the likelihood and extent of perinatal brain damage that occurs because of acute and severe hypoxia that arises during some births, and the additional impact of chronic fetal hypoxia, infection, inflammation, growth restriction and preterm birth. We discuss the types of interventions required to ameliorate or even prevent apoptotic and necrotic cell death, and the vulnerability of all the major cell types in the brain (neurons, astrocytes, oligodendrocytes, microglia, cerebral vasculature) to hypoxia/ischaemia, and whether a pan-protective treatment given to the mother before birth is a realistic prospect.
Assuntos
Paralisia Cerebral/prevenção & controle , Animais , Criança , Crianças com Deficiência , Desenvolvimento Fetal , Hipóxia Fetal , Humanos , Infecções , Inflamação , Nascimento PrematuroRESUMO
BACKGROUND: Impaired cerebral autoregulation in preterm infants makes circulatory management important to avoid cerebral hypoxic-ischemic injury. Dobutamine is frequently used as inotropic treatment in preterm neonates, but its effects on the brain exposed to cerebral hypoxia are unknown. We hypothesized that dobutamine would protect the immature brain from cerebral hypoxic injury. METHODS: In preterm (0.6 gestation) fetal sheep, dobutamine (Dob, 10 µg/kg/min) or saline (Sal) was infused intravenously for 74 h. Two hours after the beginning of the infusion, umbilical cord occlusion (UCO) was performed to produce fetal asphyxia (Sal+UCO: n = 9, Dob+UCO: n = 7), or sham occlusion (Sal+sham: n = 7, Dob+sham: n = 6) was performed. Brains were collected 72 h later for neuropathology. RESULTS: Dobutamine did not induce cerebral changes in the sham UCO group. UCO increased apoptosis and microglia density in white matter, hippocampus, and caudate nucleus, and astrocyte density in the caudate nucleus. Dobutamine commenced before UCO reduced microglia infiltration in the white matter, and microglial and astrocyte density in the caudate. CONCLUSION: In preterm hypoxia-induced brain injury, dobutamine decreases neuroinflammation in the white matter and caudate, and reduces astrogliosis in the caudate. Early administration of dobutamine in preterm infants for cardiovascular stabilization appears safe and may be neuroprotective against unforeseeable cerebral hypoxic injury.