Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36255399

RESUMO

A key driver of quality in wines is the microbial population that undertakes fermentation of grape must. Winemakers can utilise both indigenous and purposefully inoculated yeasts to undertake alcoholic fermentation, imparting wines with aromas, flavours and palate structure and in many cases contributing to complexity and uniqueness. Importantly, having a toolbox of microbes helps winemakers make best use of the grapes they are presented with, and tackle fermentation difficulties with flexibility and efficiency. Each year the number of strains available commercially expands and more recently, includes strains of non-Saccharomyces, strains that have been improved using both classical and modern yeast technology and mixed cultures. Here we review what is available commercially, and what may be in the future, by exploring recent advances in fermentation relevant strain improvement technologies. We also report on the current use of microbes in the Australian wine industry, as reported by winemakers, as well as regulations around, and sentiment about the potential use of genetically modified organisms in the future.


Assuntos
Saccharomyces cerevisiae , Vinho , Austrália , Fermentação , Aromatizantes
2.
Food Microbiol ; 109: 104124, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309435

RESUMO

Polysulfide degradation in wine can result in hydrogen sulfide (H2S) release, imparting a rotten-egg smell that is detrimental to wine quality. Although the presence of wine polysulfides has been demonstrated, their biogenesis remains unclear. This study investigated the role of Saccharomyces cerevisiae in polysulfide formation during fermentation, with and without 5 mM cysteine supplementation as an H2S source. Using an established liquid chromatography-tandem mass spectrometry method, monobromobimane derivatives of hydropolysulfides, including CysSSSH, CysSSSSH and GSSSSH, and two oxidized polysulfides, GSSG and GSSSSG, were detected in yeast cells at the end of fermentation in a grape juice-like medium. Polysulfide production by four S. cerevisiae single deletion mutants (BY4743 Δcys3, Δcys4, Δmet17 and Δtum1) showed no significant differences compared to BY4743, suggesting that uncharacterized pathways maintain cellular polysulfide homeostasis. Five mM cysteine addition increased the formation of shorter sulfur chain species, including GSS-bimane and GSSG, but did not elevate levels of longer sulfur chain species. Additionally, polysulfides with even numbers of sulfur atoms tended to predominate in cellular lysates. Oxidized polysulfides and longer chain hydropolysulfides were not detected in finished wines. This evidence suggests that these polysulfides are unstable in wine-like environments or not transported extracellularly. Collectively, our data illustrate the complexity of yeast polysulfide metabolism under fermentation conditions.


Assuntos
Vitis , Vinho , Vinho/análise , Saccharomyces cerevisiae/metabolismo , Vitis/metabolismo , Cisteína/análise , Dissulfeto de Glutationa/análise , Dissulfeto de Glutationa/metabolismo , Fermentação , Enxofre/metabolismo , Suplementos Nutricionais
3.
FEMS Yeast Res ; 22(1)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35472090

RESUMO

In winemaking, slow or stuck alcoholic fermentation can impact processing efficiency and wine quality. Residual fructose in the later stages of fermentation can leave the wine 'out of specification' unless removed, which requires reinoculation or use of a more fructophilic yeast. As such, robust, fermentation efficient strains are still highly desirable to reduce this risk. We report on a combined EMS mutagenesis and Directed Evolution (DE) approach as a 'proof of concept' to improve fructose utilization and decrease fermentation duration. One evolved isolate, Tee 9, was evaluated against the parent, AWRI 796 in defined medium (CDGJM) and Semillon juice. Interestingly, Tee 9 exhibited improved fermentation in CDGJM at several nitrogen contents, but not in juice. Genomic comparison between AWRI 796 and Tee 9 identified 371 mutations, but no chromosomal copy number variation. A total of 95 noncoding and 276 coding mutations were identified in 297 genes (180 of which encode proteins with one or more substitutions). Whilst introduction of two of these, Gid7 (E726K) or Fba1 (G135S), into AWRI 796 did not lead to the fermentation improvement seen in Tee 9, similar allelic swaps with the other mutations are needed to understand Tee 9's adaption to CDGJM. Furthermore, the 378 isolates, potentially mutagenized but with the same genetic background, are likely a useful resource for future phenotyping and genome-wide association studies.


Assuntos
Vitis , Vinho , Variações do Número de Cópias de DNA , Fermentação , Frutose/metabolismo , Estudo de Associação Genômica Ampla , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vitis/metabolismo
4.
Yeast ; 38(6): 367-381, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33560525

RESUMO

Hydrogen sulfide is a common wine fault, with a rotten-egg odour, which is directly related to yeast metabolism in response to nitrogen and sulfur availability. In grape juice, sulfate is the most abundant inorganic sulfur compound, which is taken up by yeast through two high-affinity sulfate transporters, Sul1p and Sul2p, and a low affinity transporter, Soa1p. Sulfate contributes to H2 S production under nitrogen limitation, by being reduced via the Sulfur Assimilation Pathway (SAP). Therefore, yeast strains with limited H2 S are highly desirable. We report on the use of toxic analogues of sulfate following ethyl methane sulfate treatment, to isolate six wine yeast mutants that produce no or reduced H2 S and SO2 during fermentation in synthetic and natural juice. Four amino acid substitutions (A99V, G380R, N588K and E856K) in Sul1p were found in all strains except D25-1 which had heterozygous alleles. Two changes were also identified in Sul2p (L268S and A470T). The Sul1p (G380R) and Sul2p (A470T) mutations were chosen for further investigation as these residues are conserved amongst SLC26 membrane proteins (including sulfate permeases). The mutations were introduced into EC1118 using Crispr cas9 technology and shown to reduce accumulation of H2 S and do not result in increased SO2 production during fermentation of model medium (chemically defined grape juice) or Riesling juice. The Sul1p (G380R) and Sul2p (A470T) mutations are newly reported as causal mutations. Our findings contribute to knowledge of the genetic basis of H2 S production as well as the potential use of these strains for winemaking and in yeast breeding programmes.


Assuntos
Fermentação , Sulfeto de Hidrogênio/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sulfitos/metabolismo , Substituição de Aminoácidos , Sulfeto de Hidrogênio/análise , Proteínas de Saccharomyces cerevisiae/genética , Sulfitos/análise , Vinho
5.
FEMS Yeast Res ; 21(5)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34355770

RESUMO

When investigating yeast gene function in relation to fermentation, many screens rely on haploid yeast derivatives. This, however, is not representative of industrial strains, which are typically diploid. One such example is the disruption of ECM33, which was associated with improved fermentation in the haploid wine yeast C911D, but remains uncharacterised in a diploid industrial strain background. We report on the homozygous disruption of ECM33 in Lalvin EC1118 using CRISPR/Cas9. EC1118 ecm33 resulted in a reduction of fermentation duration in a defined medium with limiting and sufficient nitrogen (-20% and -13%, respectively) when shaken. Increased cell size and aggregation, a phenotype previously unidentified in ecm33∆ as haploid yeast tend to aggregate, was also observed. This phenotype led to premature settling thereby the yeast behaving similarly to EC1118 in wine-like semi-static fermentations in a chemically defined medium. Further assessment in semi-static Riesling and Chardonnay fermentations inoculated based on cell number or biomass resulted in no significant difference or significantly slower fermentation duration in comparison the EC1118, nullifying the benefits of this mutation unless agitation is applied. This study draws attention to phenotypes being condition-dependent, highlighting the need to characterise and verify fermentation efficiency mutations in industrial yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vinho , Diploide , Fermentação , Proteínas de Membrana , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vinho/análise
6.
Appl Microbiol Biotechnol ; 105(23): 8575-8592, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34694447

RESUMO

The widespread existence of bacteriophage has been of great interest to the biological research community and ongoing investigations continue to explore their diversity and role. They have also attracted attention and in-depth research in connection to fermented food processing, in particular from the dairy and wine industries. Bacteriophage, mostly oenophage, may in fact be a 'double edged sword' for winemakers: whilst they have been implicated as a causal agent of difficulties with malolactic fermentation (although not proven), they are also beginning to be considered as alternatives to using sulphur dioxide to prevent wine spoilage. Investigation and characterisation of oenophage of Oenococcus oeni, the main species used in winemaking, are still limited compared to lactococcal bacteriophage of Lactococcus lactis and Lactiplantibacillus plantarum (formally Lactobacillus plantarum), the drivers of most fermented dairy products. Interestingly, these strains are also being used or considered for use in winemaking. In this review, the genetic diversity and life cycle of phage, together with the debate on the consequent impact of phage predation in wine, and potential control strategies are discussed. KEY POINTS: • Bacteriophage detected in wine are diverse. • Many lysogenic bacteriophage are found in wine bacteria. • Phage impact on winemaking can depend on the stage of the winemaking process. • Bacteriophage as potential antimicrobial agents against spoilage organisms.


Assuntos
Bacteriófagos , Oenococcus , Vinho , Fermentação , Lactobacillus , Vinho/análise
7.
Metab Eng ; 45: 255-264, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29289724

RESUMO

Severe oenological conditions, such as limited assimilable nitrogen and high sugar contents restrict yeast's ability to successfully complete fermentation. In the absence of a comprehensive commercially available deletion collection in a wine yeast background, a screening approach was applied to a transposon library in a wine yeast derivative to identify clones with superior fermentation performance. Five candidate genes, when disrupted by Ty insertion, were identified as enabling yeast to efficiently complete a model oenological fermentation with limited nitrogen availability. Analogous single gene disruptions were subsequently constructed in the haploid wine yeast strain C911D, and the performance of these during fermentation was analysed. Deletion of ECM33 resulted in the shortest fermentation (up to 31% reduction) in both synthetic medium and grape juice. Interestingly, no significant differences were found in nitrogen utilization, cell viability or biomass yield between ∆ecm33 and the wild type. ∆ecm33 did, however, display growth hypersensitivity to the dyes Calcofluor White and Congo Red, suggesting a link to cell wall integrity. Transcriptional profiling of ∆ecm33 during fermentation demonstrated the up-regulation of SLT2 and HOG1, encoding mitogen activated protein kinases involved in the cell wall integrity (CWI) and high osmolarity glycerol (HOG) pathways, respectively. CHS3 a major chitin synthase gene was also found to be upregulated, and the transcript abundance of key genes of central nitrogen metabolism, GLN1, GLT1, GDH1 and GDH2 in mutant ∆ecm33 were also altered. The findings highlight the complexity of the robust fermentation phenotype and provide clues for further improvement of industrial strains.


Assuntos
Parede Celular , Fermentação/genética , Deleção de Genes , Proteínas de Membrana/deficiência , Saccharomyces cerevisiae , Parede Celular/genética , Parede Celular/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
8.
FEMS Yeast Res ; 18(3)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425293

RESUMO

A deficiency of nitrogenous nutrients in grape juice can cause stuck and sluggish alcoholic fermentation, which has long been a problem in winemaking. Nitrogen requirements vary between wine yeast strains, and the ability of yeast to assimilate nitrogen depends on the nature and concentration of nitrogen present in the medium. In this study, a wine yeast gene deletion collection (1844 deletants in the haploid AWRI1631 background) was screened to identify genes whose deletion resulted in a reduction in the time taken to utilise all sugars when grown in a chemically defined grape juice medium supplemented with limited nitrogen (75 mg L-1 as a free amino acid mixture). Through micro-scale and laboratory-scale fermentations, 15 deletants were identified that completed fermentation in a shorter time than the wildtype (c.a. 15%-59% time reduction). This group of genes was annotated to biological processes including protein modification, transport, metabolism and ubiquitination (UBC13, MMS2, UBP7, UBI4, BRO1, TPK2, EAR1, MRP17, MFA2 and MVB12), signalling (MFA2) and amino acid metabolism (AAT2). Deletion of MFA2, encoding mating factor-a, resulted in a 55% decrease in fermentation duration. Mfa2Δ was chosen for further investigation to understand how this gene deletion conferred fermentation efficiency in limited nitrogen conditions.


Assuntos
Fermentação/genética , Deleção de Genes , Genes Fúngicos , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Vinho/microbiologia , Aminoácidos/metabolismo , Meios de Cultura/química , Lipoproteínas/genética , Feromônios/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação , Vitis/microbiologia
9.
Food Microbiol ; 70: 262-268, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29173635

RESUMO

Vacuolar acidification serves as a homeostatic mechanism to regulate intracellular pH, ion and chemical balance, as well as trafficking and recycling of proteins and nutrients, critical for normal cellular function. This study reports on the importance of vacuole acidification during wine-like fermentation. Ninety-three mutants (homozygous deletions in lab yeast strain, BY4743), which result in protracted fermentation when grown in a chemically defined grape juice with 200 g L-1 sugar (pH 3.5), were examined to determine whether fermentation protraction was in part due to a dysfunction in vacuolar acidification (VA) during the early stages of fermentation, and whether VA was responsive to the initial sugar concentration in the medium. Cells after 24 h growth were dual-labelled with propidium iodide and vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA) and examined with a FACS analyser for viability and impaired VA, respectively. Twenty mutants showed a greater than two-fold increase in fluorescence intensity; the experimental indicator for vacuolar dysfunction; 10 of which have not been previously annotated to this process. With the exception of Δhog1, Δpbs2 and Δvph1 mutants, where dysfunction was directly related to osmolality; the remainder exhibited increased CF-fluorescence, independent of sugar concentration at 20 g L-1 or 200 g L-1. These findings offer insight to the importance of VA to cell growth in high sugar media.


Assuntos
Saccharomyces cerevisiae/metabolismo , Açúcares/metabolismo , Vacúolos/química , Ácidos/metabolismo , Fermentação , Homeostase , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vacúolos/metabolismo , Vitis/metabolismo , Vitis/microbiologia
10.
FEMS Yeast Res ; 17(6)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28830086

RESUMO

The rotten-egg odour of hydrogen sulfide (H2S) produced by the yeast Saccharomyces cerevisiae has attracted considerable research interest due to its huge impact on the sensory quality of fermented foods and beverages. To date, the yeast genetic mechanisms of H2S liberation during wine fermentation are well understood and yeast strains producing low levels of H2S have been developed. Studies have also revealed that H2S is not just a by-product in the biosynthesis of the sulfur-containing amino acids, but indeed a vital molecule involved in detoxification, population signalling and extending cellular life span. Moreover, polysulfides have recently emerged as key players in signalling and the sensory quality of wine because their degradation leads to the release of H2S. This review will focus on the recent findings on the production of H2S and polysulfides in S. cerevisiae and summarise their potential roles in yeast survival and winemaking. Recent advances in techniques for the detection of H2S and polysulfides offer an exciting opportunity to uncover the novel genes and pathways involved in their formation from different sulfur sources. This knowledge will not only provide further insights into yeast sulfur metabolism, but could potentially improve the sensory quality of wine.


Assuntos
Fermentação , Sulfeto de Hidrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Sulfetos/metabolismo
11.
FEMS Yeast Res ; 17(5)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810701

RESUMO

An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential.


Assuntos
Cisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Fermentação , Deleção de Genes , Testes Genéticos , Proteínas de Saccharomyces cerevisiae/genética
12.
FEMS Yeast Res ; 16(8)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27915245

RESUMO

The undesirable rotten-egg odour of hydrogen sulfide (H2S) produced by yeast shortly after yeast inoculation of grape musts might be an important source of desirable varietal thiols, which contribute to tropical aromas in varieties such as Sauvign-on Blanc. In this study, we observed that Saccharomyces cerevisiae strains produce an early burst of H2S from cysteine. Both Δmet2 and Δmet17 strains produce a larger burst, likely because they are unable to utilise the H2S in the sulfate assimilation pathway. For the first time, we show that TUM1 is partly responsible for the early production of H2S from cysteine. Overex-pressing TUM1 elevated production of H2S, whilst its deletion yields only half of the H2S. We further confirmed that yeast convert cysteine to H2S by analysing growth of mutants lacking components of the transsulfuration pathway. High concent-rations of cysteine overcame this growth block, but required TUM1 Collectively, the data indicate that S. cerevisiae does not convert cysteine to sulfate or sulfite, but rather to sulfide via a novel pathway that requires the action of Tum1p. The findi-ngs of this study may allow the improvement of commercial yeasts through the manipulation of sulfur metabolism that are better suited towards production of fruit-driven styles.


Assuntos
Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Fermentação , Sulfeto de Hidrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Locos de Características Quantitativas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie
13.
BMC Genomics ; 15: 552, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24993029

RESUMO

BACKGROUND: Wine fermentation is a harsh ecological niche to which wine yeast are well adapted. The initial high osmotic pressure and acidity of grape juice is followed by nutrient depletion and increasing concentrations of ethanol as the fermentation progresses. Yeast's adaptation to these and many other environmental stresses, enables successful completion of high-sugar fermentations. Earlier transcriptomic and growth studies have tentatively identified genes important for high-sugar fermentation. Whilst useful, such studies did not consider extended growth (>5 days) in a temporally dynamic multi-stressor environment such as that found in many industrial fermentation processes. Here, we identify genes whose deletion has minimal or no effect on growth, but results in failure to achieve timely completion of the fermentation of a chemically defined grape juice with 200 g L-1 total sugar. RESULTS: Micro- and laboratory-scale experimental fermentations were conducted to identify 72 clones from ~5,100 homozygous diploid single-gene yeast deletants, which exhibited protracted fermentation in a high-sugar medium. Another 21 clones (related by gene function, but initially eliminated from the screen because of possible growth defects) were also included. Clustering and numerical enrichment of genes annotated to specific Gene Ontology (GO) terms highlighted the vacuole's role in ion homeostasis and pH regulation, through vacuole acidification. CONCLUSION: We have identified 93 genes whose deletion resulted in the duration of fermentation being at least 20% longer than the wild type. An extreme phenotype, 'stuck' fermentation, was also observed when DOA4, NPT1, PLC1, PTK2, SIN3, SSQ1, TPS1, TPS2 or ZAP1 were deleted. These 93 Fermentation Essential Genes (FEG) are required to complete an extended high-sugar (wine-like) fermentation. Their importance is highlighted in our Fermentation Relevant Yeast Genes (FRYG) database, generated from literature and the fermentation-relevant phenotypic characteristics of null mutants described in the Saccharomyces Genome Database. The 93-gene set is collectively referred to as the 'Fermentome'. The fact that 10 genes highlighted in this study have not previously been linked to fermentation-related stresses, supports our experimental rationale. These findings, together with investigations of the genetic diversity of industrial strains, are crucial for understanding the mechanisms behind yeast's response and adaptation to stresses imposed during high-sugar fermentations.


Assuntos
Fermentação/genética , Saccharomyces cerevisiae/genética , Transcriptoma , Deleção de Genes , Genes Fúngicos , Engenharia Genética , Concentração de Íons de Hidrogênio , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia
14.
Microb Genom ; 9(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272916

RESUMO

Kazachstania aerobia and Kazachstania servazzii can affect wine aroma by increasing acetate ester concentrations, most remarkably phenylethyl acetate and isoamyl acetate. The genetic basis of this is unknown, there being little to no sequence data available on the genome architecture. We report for the first time the near-complete genome sequence of the two species using long-read (PacBio) sequencing (K. aerobia 20 contigs, one scaffold; and K. servazzii 22 contigs, one scaffold). The annotated genomes of K. aerobia (12.5 Mb) and K. servazzii (12.3 Mb) were compared to Saccharomyces cerevisiae genomes (laboratory strain S288C and wine strain EC1118). Whilst a comparison of the two Kazachstania spp. genomes revealed few differences between them, divergence was evident in relation to the genes involved in ester biosynthesis, for which gene duplications or absences were apparent. The annotations of these genomes are valuable resources for future research into the evolutionary biology of Kazachstania and other yeast species (comparative genomics) as well as understanding the metabolic processes associated with alcoholic fermentation and the production of secondary 'aromatic' metabolites (transcriptomics, proteomics and metabolomics).


Assuntos
Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genômica , Acetatos
15.
Int J Food Microbiol ; 362: 109496, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34895934

RESUMO

We report the fermentative traits of two Kazachstania species (K. aerobia and K. servazzii) in non-sterile red wine and the resulting chemical and sensory properties. This builds on our previous work which revealed that Kazachstania spp. increased acetate esters in sterilised white wine. In this study Kazachstania spp. were initially evaluated in laboratory-scale fermentations (500 mL) in Merlot must to assess whether similar increases in chemical/volatile compounds would occur. The impact of malolactic fermentation (MLF) by Oenococcus oeni (VP41) on aroma composition was considered and found to reduce ester profiles in Merlot wines. The sensory implications of sequential inoculation with Kazachstania spp., followed by Saccharomyces cerevisiae, were then evaluated in small-lot fermentations (7 kg) of Shiraz must. Fungal diversity was monitored during early fermentation stages and was influenced by the early implantation of Kazachstania spp., followed by the dominance of S. cerevisiae. The effect of MLF in Shiraz wines was inconclusive due to high ethanol levels providing an inhospitable environment for lactic acid bacteria. When compared to S. cerevisiae alone, Kazachstania spp. significantly increased acetate esters, particularly phenylethyl acetate and isoamyl acetate, in both Merlot and Shiraz. The Shiraz wines fermented with Kazachstania spp. had higher jammy and red fruit aroma/flavour compared to S. cerevisiae (monoculture) wines. No influence was observed on colour one-year post-bottling. Results from this study show the contribution of Kazachstania spp. to the aroma profile of red wines and demonstrate their potential as starter cultures for improving the aromatic complexity of wines.


Assuntos
Oenococcus , Saccharomycetales , Vinho , Fermentação , Odorantes/análise , Saccharomyces cerevisiae , Vinho/análise
16.
Int J Food Microbiol ; 312: 108373, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31654841

RESUMO

The use of non-Saccharomyces yeast in conjunction with Saccharomyces cerevisiae in wine fermentation is a growing trend in the wine industry. Non-Saccharomyces, through their distinctive production of secondary metabolites, have the potential to positively contribute to wine sensory profile. To discover new candidate strains for development as starter cultures, indigenous non-Saccharomyces were isolated from un-inoculated fermenting Shiraz musts from a South Australian vineyard (McLaren Vale wine region) and characterised. Among the 77 isolates, 7 species belonging to 5 genera (Kazachstania, Aureobasidium, Meyerozyma, Wickerhamomyces and Torulaspora) were identified by sequencing the internal transcribed spacer regions of the 5.8S rRNA gene (ITS1-5.8S-ITS2 region). The indigenous isolates were evaluated for oenological properties, namely, ethanol tolerance, enzyme activity, and H2S production. To determine their potential industrial use as starter cultures, representative isolates of each species were assessed in a sterile chemically defined grape juice and Viognier grape juice to evaluate their contribution to fermentation kinetics and production of key metabolites, including volatile compounds.


Assuntos
Saccharomycetales/genética , Saccharomycetales/metabolismo , Vitis/metabolismo , Vinho/microbiologia , Leveduras/metabolismo , Austrália , DNA Intergênico/genética , Fazendas , Fermentação , RNA Ribossômico 5,8S/genética , Saccharomycetales/classificação , Saccharomycetales/isolamento & purificação , Austrália do Sul , Vinho/análise
17.
Chem Commun (Camb) ; 55(60): 8868-8871, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31240288

RESUMO

New evidence on the role of H2S as a gasotransmitter suggests that the true signalling effectors are polysulfides. Both oxidized polysulfides and hydropolysulfides were synthesized and their presence in S. cerevisiae was observed for the first time. A single gene-deletant approach allowed observation of the modulation of polysulfide species and levels.


Assuntos
Gasotransmissores/análise , Saccharomyces cerevisiae/química , Sulfetos/análise , Proteínas de Transporte/genética , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Gasotransmissores/síntese química , Gasotransmissores/metabolismo , Deleção de Genes , Metabolômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sulfetos/síntese química , Sulfetos/metabolismo
18.
FEMS Yeast Res ; 4(3): 339-47, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14654439

RESUMO

The characterisation of wine yeasts and the complex metabolic processes influencing wine fermentation and the quality of wine might best be achieved by exploiting the standard classical and recombinant genetic techniques which have been successfully used with laboratory strains. However, application of these techniques to industrial strains has been restricted because such strains are typically prototrophic and often polyploid. To overcome this problem, we have identified commercial wine strains with good mating and sporulation properties from which heterothallic derivatives were constructed by disruption of the HO gene. Consequently, these haploids are amenable to genetic analysis, whilst retaining desirable wine-making properties. The approach used was an adaptation of a previously published gene disruption procedure for laboratory yeast and is based on the acquisition of geneticin resistance from a removable KanMX marker. The present work is the first report of the application of a construct of this type to the disruption of the HO gene in wine yeasts that are in common commercial use. Most of the 4.9-kb disruption construct was successfully removed from the genome of the haploid derivative strains by loop-out of the KanMX marker through meiotic recombination. Sequencing of the HO region confirmed the reduction of foreign sequences to a 582-bp fragment comprised largely of a single direct repeat at the target gene. The removal of the active foreign gene (conferring antibiotic resistance) allows the application of other constructs based on the KanMX module without the need to resort to other selectable marker systems. Laboratory-scale fermentation trials typically showed minimal differences between the HO disruptants and the parental wine strains in terms of fermentation kinetics and formation of key metabolites.


Assuntos
Genes Fúngicos/genética , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Sequência de Bases , Microbiologia de Alimentos , Marcadores Genéticos , Técnicas Genéticas , Dados de Sequência Molecular , Reprodução , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/fisiologia , Transformação Bacteriana , Vinho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA