RESUMO
Hydrogeological numerical models are essential for assessing radioactive waste disposal by understanding groundwater flow systems. These models typically rely on hydraulic head data, with other state variables often underutilized in model inversions. In Flanders' Neogene aquifer, where safety studies for Boom Clay are ongoing, existing models face uncertainties due to dependence on hydraulic heads alone. This study aims to: i) develop a conceptual model of radiogenic Helium-4 (4Herad) production and transport to reproduce observed concentrations; ii) evaluate the usefulness of 4Herad observations as an additional state variable for inverse conditioning; and iii) assess how including 4Herad affects model calibration and uncertainty reduction. We address these objectives by incorporating radiogenic Helium-4 (4Herad) as an unconventional state variable in model inversion to tackle parameter non-uniqueness. Utilizing a Bayesian approach, we employ two 3D models: a groundwater flow (GWF) model conditioned by hydraulic heads and a coupled GWF model with 4Herad production and transport, conditioned by both hydraulic heads and 4Herad concentrations. We hypothesize that integrating 4Herad will improve model accuracy and reduce uncertainties compared to using hydraulic head data alone. Findings indicate that major 4Herad sources include crustal fluxes (~57 %) and in situ Boom Clay production (~25 %). The coupled inference narrows the posterior distributions of parameters, especially for hydraulic conductivity (e.g., Mol, Diest, Berchem formations, and the Rauw Fault) and recharge, showing that 4Herad observations effectively reduce uncertainty beyond hydraulic head data. Including 4Herad improves model reliability and prediction accuracy, highlighting its importance for refining groundwater flow parameters and derived fluxes. To the best of our knowledge, this study marks the first-ever attempt at harnessing 4Herad quantitative insights into flow and transport parameters following a Bayesian approach at a catchment scale, setting a precedent for future research and emphasizing the innovative nature of this work. This study showcases a state-of-the-art approach in hydrogeological modelling, demonstrating the effectiveness of integrating 4Herad with hydraulic head observations to produce more reliable model predictions. By reducing uncertainties in crucial groundwater fluxes, this approach offers significant potential for improving geological disposal safety studies. This pioneering work advocates for the continued use of 4Herad in hydrogeological modelling, emphasizing its innovative contribution to future research and safety studies. PLAIN LANGUAGE SUMMARY: Understanding how groundwater flows is crucial for safely storing radioactive waste. Traditionally, models used to study groundwater rely mostly on measurements of water pressure, while other valuable data often go unused. In the Neogene aquifer in Flanders, where researchers are studying the Boom Clay formation for potential waste storage, relying only on water pressure has created uncertainties in the models. This study explores a new approach by using a different type of measurement: radiogenic Helium-4 (4Herad). The goals of the study are threefold: first, to build a model that accurately represents how 4Herad is produced and moves through the groundwater; second, to test whether including 4Herad as an additional measurement improves the model compared to using only water pressure data; and third, to see how using 4Herad affects the accuracy and reliability of the model. The study uses two types of models: one that relies only on water pressure data and another that includes both water pressure and 4Herad measurements. The idea is that 4Herad could provide additional insights and help reduce uncertainties in the model. The findings show that 4Herad comes mainly from two sources: the surrounding crust and the Boom Clay itself. Including 4Herad in the model helps narrow down uncertainties, particularly regarding how water moves through different layers and how much water is being replenished. This research is the first to use 4Herad in this way, using a formal statistical method to improve groundwater models. The results suggest that 4Herad is a valuable addition for making more accurate predictions and improving safety assessments for radioactive waste storage.
RESUMO
Lake Tana basin encompasses a wide regional volcanic aquifer system, in the northwestern highlands of Ethiopia. It has significant water resource potential for water supply and irrigation purposes. The objective of this study was to assess the physiochemical characteristics of the surface water-groundwater and investigate the processes controlling groundwater chemistry. A total of 273 water samples were collected from different water points for major ions and stable isotope analysis, representing different physiographic and hydrogeologic regions. Multivariate statistical, graphical methods, saturation and speciation modelling were used jointly to characterize water chemistry and to define hydrogeochemical processes. The Piper plots in combination with cluster analysis and isotope hydrological data indicate that, generally, the groundwater chemistry of the basin can be classified into (1) low TDS Ca-HCO3, Ca-Mg-HCO3, and Ca-Na-Mg-HCO3 type water which is relatively enriched in δ18O-δ2H and depleted in δ13C. These are recharge waters, which are characterized by low rock-water interaction; (2) brackish Mg-Na-Ca-HCO3 type water which is relatively depleted in δ18O-δ2H and enriched in δ13C; and (3) low TDS Na-(Ca)-HCO3 and Na-HCO3 type water which varies from less to more depleted in δ18O-δ2H and is characterized by relatively enriched δ13C. The cross-plots of the major cations vs. HCO3- and stability diagrams show that the primary processes controlling the groundwater evolution in the Lake Tana basin are alumino-silicate weathering and dissolution. Studying the hydrogeochemical characteristics of a complex geologic system with integrated approach helps to understand the complex groundwater flow system and flow dynamics, which in turn helps for proper groundwater utilization and future management.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Etiópia , Poluentes Químicos da Água/análise , Água Subterrânea/química , Água/análise , Qualidade da ÁguaRESUMO
The water budget myth, which is the idea that safe pumping must not exceed the initial recharge, gave rise to a controversy about the role of recharge in assessing the sustainability of groundwater development. To refute the concept of safe yield, a simplified water budget equation is used, which equals the total pumping rate to the sum of capture and storage change. Since initial recharge and discharge are canceled out from this equation, it is concluded that sustainable pumping has nothing to do with recharge. Investigating the assumptions underlying this equation, it is seen that it expresses the superposition principle, which implicitly assumes the groundwater reservoir can be depleted indefinitely and boundary conditions are an infinite source of water. To evaluate sustainability, however, the limits of the aquifer system must be examined accurately. Theoretically, this can only be accomplished applying nonlinear models, in which case setting up the simplified water budget equation is impossible without knowing the initial conditions. Hence, excluding recharge when assessing sustainable pumping may not be done inconsiderately, which is illustrated by two examples. An analytical solution, developed by Ernst in 1971 to simulate flow to a well in a polder area with a nonlinear function for drainage, even shows that it is not necessarily a misconception to assume the cone of depression stops expanding when the pumping rate is balanced by the infiltration rate.
Assuntos
Água Subterrânea , Dinâmica não Linear , Água , Movimentos da ÁguaRESUMO
This study investigates the localities of low and high F- groundwaters in the aquifer system on the flanks of Mount Meru to come up with guidelines to provide groundwater that can be used for drinking water supply without health impacts on the population. Our study focuses on parts of the flanks which were only partially or not at all covered by previous research. Results show that the groundwater chemistry of F--rich NaHCO3 alkaline groundwater in the area is controlled by dissolution of weathering aluminosilicate minerals, dissolution of F--bearing minerals, the precipitation of carbonate minerals as secondary products and the dissolution of magmatic gases. The low F- groundwaters which can be used for drinking water supply without health impacts under the WHO limit (1.5 mg/L) are the low-fluoride springs from the high altitude recharge areas on the eastern and north-western flanks of Mount Meru inside Arusha National Park, whereas on the western flank the groundwater meets the Tanzanian limit (4.0 mg/L). On the south-western flank, the shallow aquifer composed of alluvium deposits at lower elevations, shows F- values that meet the Tanzanian limit. One of the three investigated deep boreholes on this flank also meets the Tanzanian limit, suggesting a possibility of finding relatively low F- groundwaters in the deep aquifer. Yet, in general, the deposits at lower elevations are found to contain high to very high F- values, whereas the deposits at high elevations contain groundwater of low F- values. Thus, the internal texture and grain size of geological formations, the burial depth of these formations and the water residence times are the factors determining the groundwater mineralisation and F- concentrations in the area. The study identified that the deep hydrothermal system has influence on the high F- groundwaters on the eastern and north-eastern flanks of Mount Meru.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Fluoretos/análise , Tanzânia , Poluentes Químicos da Água/análiseRESUMO
Dhaka is one of the highly populated cities in the world. Increased urbanization and population growth in Dhaka are mostly dependent on groundwater, with 78% of the supply water coming from the Plio-Pleistocene Dupi Tila aquifer. This research was conducted with the objectives of identifying ion chemistry, hydrochemical processes and their relationship to groundwater quality and finding out the impact of over-exploitation on Dupi Tila aquifer. Three consecutive semi-confined aquifers have been delineated up to the explored depth: the Upper Dupi Tila aquifer (UDA), Middle Dupi Tila aquifer (MDA) and Lower Dupi Tila aquifer (LDA). Hydrogeochemical processes and water quality have been inferred from bivariate plots, correlation of major ions, piper plot and stable isotopes analysis. The total dissolved solids show an increasing downwards trend from an average of 267 mg/l in UDA to an average of 284 mg/l in LDA. Waters in all three aquifers as well as surface water (SW) are mainly of Ca/Mg-HCO3 type. The weathering of aluminosilicates controls the concentration of the major ions. Even though there is a significant decline in piezometric level both in UDA (> -85 m Public Works Department reference datum (PWD)) and MDA (> -65 m PWD), there is no evidence of groundwater recharge through direct infiltration from the river. The stable isotopes indicate most of the UDA, MDA and LDA waters are mainly from local precipitation. Increasingly enriched mean values for stable isotopes for the subsequent aquifers UDA, MDA and LDA, as well as increasing PCO2 for UDA < MDA < LDA, indicate increasingly warmer recharge conditions. The overall groundwater quality in the aquifers is good. At present, we have no indication that groundwater exploitation has altered groundwater quality of the Dupi Tila aquifer. Therefore, it is of vital importance to regularly monitor water quality for the purposes in order to timely detect any potential water quality alteration that could be aggravated by the vast decline in piezometric level, in view of the long-term sustainable development of the groundwater resources of this city.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Bangladesh , Dióxido de Carbono/análise , Cidades , Monitoramento Ambiental , Água Subterrânea/análise , Isótopos/análise , Poluentes Químicos da Água/análiseRESUMO
The population of the semi-arid areas of the countries in the East African Rift Valley (EARV) is faced with serious problems associated with the availability and the quality of the drinking water. In these areas, the drinking water supply largely relies on groundwater characterised by elevated fluoride concentration (> 1.5 mg/L), resulting from interactions with the surrounding alkaline volcanic rocks. This geochemical anomaly is often associated with the presence of other naturally occurring potentially toxic elements (PTEs), such as As, Mo, U, V, which are known to cause adverse effects on human health. This study reports on the occurrence of such PTEs in the groundwater on the populated flanks of Mt. Meru, an active volcano situated in the EARV. Our results show that the majority of analysed PTEs (Al, As, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Se, Sr, Pb, and Zn) are within the acceptable limits for drinking purpose in samples collected from wells, springs and tap systems, suggesting that there is no immediate health risk associated with these PTEs. However, some of the samples were found to exceed the WHO tolerance limit for U (> 30 µg/L) and Mo (> 70 µg/L). The sample analysis also revealed that in some of the collected samples, the concentrations of total dissolved solids, Na+ and K+ exceed the permissible limits. The concerning levels of major parameters and PTEs were found to be associated with areas covered with debris avalanche deposits on the northeast flank, and volcanic ash and alluvial deposits on the southwest flanks of the volcano. The study highlights the need to extend the range of elements monitored in the regional groundwater and make a more routine measurement of PTEs to ensure drinking water safety and effective water management measures.
Assuntos
Água Potável , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Tanzânia , Poluentes Químicos da Água/análiseRESUMO
Diffuse groundwater contamination by intense fertilizer use is a widespread problem in most of the agricultural regions in West-Europe and in many other countries worldwide. As a result elevated nitrate concentrations in groundwater are found, and as groundwater is the source of baseflow into rivers and streams, also surface waters show increased nitrate levels. Flanders in the north of Belgium is no exception and despite restrictions on the fertilizer use and remediation practices initiated in the mid-1990s, and still ongoing, in many stream monitoring points, peak concentrations are measured above the 50 mg/l criterium. In many monitoring stations there is apparently a long delay between the start of the restrictions and effect on water quality. Often this delay is related to high concentrations in the groundwater inflow and long residence and travel times of groundwater feeding the streams. To better understand this behavior and estimate response times a tool was developed that incorporates the main water flows in a typical catchment and considers the effects of varying groundwater ages. This tool is conceived as a parsimonious lumped parameter model, simple and easy enough to be used by many people but still capturing the main mechanisms end processes. In this paper the tool is explained and it is applied on two testcases in Flanders to show its performance.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Distribuição por Idade , Monitoramento Ambiental , Humanos , Nitratos/análise , Tempo de Reação , Rios , Poluentes Químicos da Água/análiseRESUMO
The Ledo-Paniselian aquifer in Belgium has been proposed to offer unique opportunities to study groundwater recharge and flow in periglacial conditions during the Last Glacial Maximum (LGM), due to its location in the permanent permafrost area, south of the ice sheet at that time. A palaeoclimatic record had been set up previously for this aquifer, consisting of major ion chemistry, stable isotopes, radiocarbon and noble gases. In this paper, methane data have been used to further refine the paleoclimatic model, along with revisiting in detail the set of chemical data, focusing on the area where groundwaters, recharged around the LGM, are known to occur. It was found that the high methane concentrations corroborate the hypothesis of groundwater recharge taking place during permafrost melting, from methane-bubbling lakes that had developed to the south of an eolian sand ridge. A relict flow path, existing in the aquifer during some period as permafrost was thawing, has been established, starting from these temporary recharge areas, based on various chemical parameters, radiocarbon model ages and noble gas recharge temperatures.
Assuntos
Água Subterrânea , Bélgica , Isótopos/análise , Lagos , MetanoRESUMO
The hydrogeochemical processes in the multilayer aquifers of southwest (SW) coastal area of Bangladesh provide important information for quantifying hydrochemical differences between different aquifers. Hydrogeochemical processes affecting groundwater chemistry in this coastal area have been evaluated by interpreting conventional plots, ionic delta, HFE-diagram, stable isotopes and geochemical modelling. The median TDS distribution of the aquifers has an increasing trend from below 1000 mg/l in the deep aquifer (DA) to 2622 mg/l in lower shallow aquifer (LSA) and 7012 mg/l in upper shallow aquifer (USA). Na+ is the dominant cation in all the aquifers. HCO3- is the dominant anion in DA with high median concentration (495 mg/l), which is more than double than that in LSA (214 mg/l) and USA (159 mg/l). The groundwater in the DA is freshened NaHCO3+ type due to cation exchange process that enhances second stage of calcite dissolution. Few NaCl+ type DA waters found in the SW corner of the study area indicate the presence of connate water confined in the inter-basin during the Holocene transgression. The stable isotopes indicate that the DA waters have been deposited during warmer periods. In contrast, both the LSA and USA are dominated by NaCl- type water; some CaCl- type waters have also been found in these aquifers, indicating salinization. The salinization processes consist of infiltration of redissolved evaporite salts, reverse cation exchange, and mixing with marine influenced flood water. Thus, the knowledge of different processes controlling freshening and salinization will help properly manage and preserve the environmental characteristics in the aquifer systems of SW Bangladesh as well as similar complex coastal geological settings.
RESUMO
Groundwater recharge estimation, aquifer response to meteorological variables, and evapotranspiration calculations have been performed on a semi-humid catchment, in northwestern Ethiopian plateau. The Soil Moisture Balance (SMB), WetSpass water balance model, Water Table Fluctuation (WTF), and Chloride Mass Balance (CMB) methods are applied to estimate the groundwater recharge. Accordingly, 431 mm, 462 mm, and 477 mm recharge amounts are estimated as mean annual value, respectively, using SMB, WetSpass, and CMB methods. Based on the WTF method, the annual recharge rates of the volcanic aquifers range from 157 mm to 760 mm. The SMB and WetSpass methods are less effective for the flat physiographic area, where the recharge rate is storage controlled rather than precipitation amount. The calculated high recharge for maintain-front aquifers using WTF is attributed to extra rising due to lateral groundwater flow, which restricts the reliability of the method for such aquifer geometries. High groundwater level rising rate (121 mm/day) has been observed for the steeply sloping, low rates (11 mm/day) for the flat floodplain, and intermediate rate (52 mm/day) for the gently sloping volcanic aquifers. Similarly, receding rates of 3.18 mm/day were found for the steeply sloping, 0.40 mm/day for the floodplain, and 1.14 mm/day for the gentle sloping aquifers. The recession, in all of the topographies, is happening with second-order polynomial decay function. A strong connection between the shallow and deep groundwater aquifers is noted. Storage change in the relatively deeper volcanic aquifers is due to vertical groundwater flow from the overlying alluvial aquifer. This indicates that the recharge mechanism is local, and may be the reason for the low aquifer productivity of the Dangila wellfield. Diurnal water table fluctuation is detrended from the receding trend of the dry period, and evapotranspiration from the groundwater is estimated at 28% of total ET.
RESUMO
Knowledge of the geographical distribution of soils is indispensable for policy and decision makers to achieve the goal of increasing agricultural production and reduce poverty, particularly in the Global South. A study was conducted to better understand the soilscapes of the Giba catchment (900-3300 m a.s.l.; 5133 km2) in northern Ethiopia, so as to sustain soil use and management. To characterise the chemical and physical properties of the different benchmark soils and to classify them in line with the World Reference Base of Soil Resources, 141 soil profile pits and 1381 soil augerings at representative sites were analysed. The dominant soil units identified are Leptosol and bare rock (19% coverage), Vertic Cambisol (14%), Regosol and Cambisol (10%), Skeletic/Leptic Cambisol and Regosol (9%), Rendzic Leptosol (7%), Calcaric/Calcic Vertisol (6%), Chromic Luvisol (6%) and Chromic/Pellic Vertisol (5%). Together these eight soil units cover almost 75% of the catchment. Topography and parent material are the major influencing factors that explain the soil distribution. Besides these two factors, land cover that is strongly impacted by human activities, may not be overlooked. Our soil suitability study shows that currently, after thousands of years of agricultural land use, a new dynamic equilibrium has come into existence in the soilscape, in which ca. 40% of the catchment is very suitable, and 25% is moderately suitable for agricultural production. In view of such large suitable areas, the Giba catchment has a good agricultural potential if soil erosion rates can be controlled, soil fertility (particularly nitrogen) increased, available water optimally used, and henceforth crop yields increased.
Assuntos
Agricultura , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Solo/química , Etiópia , Nitrogênio/análiseRESUMO
The desert of eastern Libya forms one of the most arid regions of the Sahara. The Great Man-Made River Project (GMRP) was established. It transports millions of cubic meters of water a day from desert wellfields to the coastal cities, where over 80% of the population lives. The Tazerbo Wellfield is one of the wellfields designed within the GMRP, delivering water to the eastern coast of Libya through an underground pipe network. Tazerbo Wellfield consists of 108 production wells; each well was designed to pump 100 L/s. The planned total groundwater withdrawal from all wells is 1 million m3 /d. The deep sandstone aquifer (Nubian sandstone) is covered by a thick mudstone-siltstone aquitard and is being heavily pumped. The aquifer and fine-grained sediments of the aquitard may be compacted resulting in land subsidence as a result of high exploitation. Local sinkholes have developed in the area of Tazerbo since the start of the pumping from the wellfield in 2004. These sinkholes have been caused mainly by lowering of the piezometric heads due to the withdrawal of groundwater. In this study, a hydrogeological investigation is presented about the effect of large groundwater pumping from the Nubian sandstone aquifer in Tazerbo Wellfield, SE Libya, based on physical parameters for 108 production wells and 23 observation wells.