Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(9): 2348-2361.e6, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33730597

RESUMO

The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.


Assuntos
Vacinas contra COVID-19/sangue , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Chlorocebus aethiops , Ensaios Clínicos como Assunto , Células HEK293 , Humanos , Imunização Passiva , Modelos Moleculares , Mutação/genética , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Células Vero , Soroterapia para COVID-19
2.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33756110

RESUMO

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Sítios de Ligação de Anticorpos , Células CHO , Chlorocebus aethiops , Cricetulus , Epitopos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , SARS-CoV-2/imunologia , Células Vero
3.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33743891

RESUMO

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células CHO , COVID-19/epidemiologia , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Pandemias , Ligação Proteica , Relação Estrutura-Atividade , Células Vero
4.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33852911

RESUMO

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sítios de Ligação , COVID-19/terapia , COVID-19/virologia , Linhagem Celular , Humanos , Evasão da Resposta Imune , Imunização Passiva , Mutação , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/genética , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas/imunologia , Soroterapia para COVID-19
5.
Cell ; 184(16): 4220-4236.e13, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34242578

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/química , COVID-19/patologia , COVID-19/terapia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Imunização Passiva , Testes de Neutralização , Domínios Proteicos/imunologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Soroterapia para COVID-19
6.
Proc Natl Acad Sci U S A ; 116(50): 25057-25067, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767754

RESUMO

Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes frequent outbreaks of severe neurologic and respiratory disease in humans with high case fatality rates. The 2 glycoproteins displayed on the surface of the virus, NiV-G and NiV-F, mediate host-cell attachment and membrane fusion, respectively, and are targets of the host antibody response. Here, we provide a molecular basis for neutralization of NiV through antibody-mediated targeting of NiV-F. Structural characterization of a neutralizing antibody (nAb) in complex with trimeric prefusion NiV-F reveals an epitope at the membrane-distal domain III (DIII) of the molecule, a region that undergoes substantial refolding during host-cell entry. The epitope of this monoclonal antibody (mAb66) is primarily protein-specific and we observe that glycosylation at the periphery of the interface likely does not inhibit mAb66 binding to NiV-F. Further characterization reveals that a Hendra virus-F-specific nAb (mAb36) and many antibodies in an antihenipavirus-F polyclonal antibody mixture (pAb835) also target this region of the molecule. Integrated with previously reported paramyxovirus F-nAb structures, these data support a model whereby the membrane-distal region of the F protein is targeted by the antibody-mediated immune response across henipaviruses. Notably, our domain-specific sequence analysis reveals no evidence of selective pressure at this region of the molecule, suggestive that functional constraints prevent immune-driven sequence variation. Combined, our data reveal the membrane-distal region of NiV-F as a site of vulnerability on the NiV surface.


Assuntos
Anticorpos Neutralizantes , Vírus Hendra , Proteínas Virais de Fusão , Internalização do Vírus , Anticorpos Monoclonais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Linhagem Celular Tumoral , Glicosilação , Células HEK293 , Vírus Hendra/química , Vírus Hendra/imunologia , Vírus Hendra/metabolismo , Vírus Hendra/fisiologia , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo
7.
Nat Methods ; 14(8): 805-810, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628129

RESUMO

We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.


Assuntos
Algoritmos , Cristalografia por Raios X/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Vírus/ultraestrutura , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
8.
Proc Natl Acad Sci U S A ; 114(4): 770-775, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28074040

RESUMO

Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Hepatite A/imunologia , Animais , Anticorpos Monoclonais/imunologia , Sítios de Ligação/imunologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C
9.
J Cancer ; 14(16): 3099-3107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859816

RESUMO

Objectives: Black patients have the highest overall incidence rate of early onset colorectal cancer, with many of these patients presenting with more aggressive disease at diagnosis, ultimately leading to decreased overall survival. We aimed to (1) evaluate how race and age affected overall survival in colorectal cancer patients, and (2) determine the different demographic and clinical covariables that may influence survival in younger individuals. Methods: The 2017 National Cancer Database (NCDB) was used to identify all patients that had colorectal cancer between 2004-2017. These patients were then divided into groups according to age (<45 and ≥45 years old) and race (white and black). Overall survival (OS) between white and black groups according to age was compared. Initial testing of survivor functions between groups revealed violations of the proportional hazards assumption. Accordingly, we used parametric maximum likelihood analyses fitting the survivor functions to Weibull distributions. Logistic regression analysis was used to determine univariate and multivariate relationships between the covariates and race for younger subjects. Propensity score matching analysis was also used to control for differences in the demographic or clinical variables between the young black versus white subgroups. Results: Out of 1.4 million potential cases initially identified, 207,823 unique cases were deemed eligible for evaluation based on study criteria. Black patients in the study population were more likely to be female, have medical comorbidities, and come from areas with lower average income and baseline education. OS was lower in older patients of both race categories when compared to the younger cohorts. Among patients older than 45 years, there were no significant differences in proportional hazard of death between black and white patients. However, among those younger than 45 years, younger black patients had significantly increased hazard of death. Regarding disease burden at diagnosis, pathologic characteristics and overall risk of death, there were no significant differences between black and white patients. Conclusions: Overall survival in young black patients with colorectal cancer is significantly reduced when compared to young white patients, even when controlling for demographic and pathologic factors. This suggests that the outcome disparities between black and white patients are complex, and the underlying factors are not well understood.

10.
Sci Adv ; 9(25): eadg7865, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343087

RESUMO

Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions-unbiased toward any specific target. We performed a protein sequence-conditioned sampling on the generative foundation model to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD) and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each target. The most potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization assays. These results establish that a single, broadly deployable generative foundation model for accelerated inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.


Assuntos
Anticorpos Antivirais , COVID-19 , Humanos , Anticorpos Antivirais/química , SARS-CoV-2/metabolismo , Ligação Proteica , Sequência de Aminoácidos
11.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 5): 592-600, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22525757

RESUMO

Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Cristalização/instrumentação , Cristalografia por Raios X/instrumentação , Enterovirus Bovino/química , Infecções por Enterovirus/virologia , Desenho de Equipamento , Complexos Multiproteicos/química
12.
J Immunol ; 184(12): 6910-9, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483727

RESUMO

Bone remodeling involves bone resorption by osteoclasts and synthesis by osteoblasts and is tightly regulated by the receptor activator of the NF-kappaB ligand (RANKL)/receptor activator of the NF-kappaB (RANK)/osteoprotegerin molecular triad. RANKL, a member of the TNF superfamily, induces osteoclast differentiation, activation and survival upon interaction with its receptor RANK. The decoy receptor osteoprotegerin inhibits osteoclast formation by binding to RANKL. Imbalance in this molecular triad can result in diseases, including osteoporosis and rheumatoid arthritis. In this study, we report the crystal structures of unliganded RANK and its complex with RANKL and elucidation of critical residues for the function of the receptor pair. RANK represents the longest TNFR with four full cysteine-rich domains (CRDs) in which the CRD4 is stabilized by a sodium ion and a rigid linkage with CRD3. On association, RANK moves via a hinge region between the CRD2 and CRD3 to make close contact with RANKL; a significant structural change previously unseen in the engagement of TNFR superfamily 1A with its ligand. The high-affinity interaction between RANK and RANKL, maintained by continuous contact between the pair rather than the patched interaction commonly observed, is necessary for the function because a slightly reduced affinity induced by mutation produces significant disruption of osteoclast formation. The structures of RANK and RANKL-RANK complex and the biological data presented in the paper are essential for not only our understanding of the specific nature of the signaling mechanism and of disease-related mutations found in patients but also structure based drug design.


Assuntos
Ligante RANK/química , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/química , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/imunologia , Sequência de Aminoácidos , Animais , Cristalização , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Difração de Raios X
13.
PLoS Pathog ; 5(10): e1000620, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19816570

RESUMO

Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form 'altered' particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry.


Assuntos
Aphthovirus/fisiologia , Infecções por Picornaviridae/fisiopatologia , Animais , Aphthovirus/genética , Aphthovirus/ultraestrutura , Chlorocebus aethiops/virologia , Febre Aftosa/genética , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Concentração de Íons de Hidrogênio , Picornaviridae/fisiologia , RNA Viral/genética , Infecções Respiratórias/virologia , Viremia
14.
Nanoscale ; 13(47): 19875-19883, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34851350

RESUMO

Viruses are very attractive biomaterials owing to their capability as nanocarriers of genetic material. Efforts have been made to functionalize self-assembling viral protein capsids on their exterior or interior to selectively take up different payloads. PRD1 is a double-stranded DNA bacteriophage comprising an icosahedral protein outer capsid and an inner lipidic vesicle. Here, we report the three-dimensional structure of PRD1 in complex with the antipsychotic drug chlorpromazine (CPZ) by cryo-electron microscopy. We show that the jellyrolls of the viral major capsid protein P3, protruding outwards from the capsid shell, serve as scaffolds for loading heterocyclic CPZ molecules. Additional X-ray studies and molecular dynamics simulations show the binding modes and organization of CPZ molecules when complexed with P3 only and onto the virion surface. Collectively, we provide a proof of concept for the possible use of the lattice-like organisation and the quasi-symmetric morphology of virus capsomers for loading heterocyclic drugs with defined properties.


Assuntos
Bacteriófago PRD1 , Preparações Farmacêuticas , Capsídeo , Proteínas do Capsídeo , Microscopia Crioeletrônica , Vírion
15.
J Gen Virol ; 91(Pt 8): 1971-1977, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20427563

RESUMO

Equine rhinitis A virus (ERAV) shares many features with foot-and-mouth disease virus (FMDV) and both are classified within the genus Aphthovirus of the family Picornaviridae. ERAV is used as a surrogate for FMDV research as it does not require high-level biosecurity. In contrast to FMDV, which uses integrins as cellular receptors, the receptor for ERAV has been reported to involve the sugar moiety sialic acid. This study confirmed the importance of sialic acid for cell entry by ERAV and reports the crystal structure of ERAV particles complexed with the receptor analogue 3'-sialyllactose. The receptor is attached to the rim of a capsid pit adjacent to the major immunogenic site and distinct from the sialic acid binding site used by a related picornavirus, the cardiovirus Theiler's murine encephalitis virus. The structure of the major antigenic determinant of the virus, previously identified from antibody escape mutations, is also described as the EF loop of VP1, which forms a hairpin stretching across the capsid surface close to the icosahedral fivefold axis, neighbouring the receptor-binding site, and spanning two protomeric units.


Assuntos
Aphthovirus/química , Oligossacarídeos/química , Receptores Virais/química , Antígenos Virais/química , Aphthovirus/fisiologia , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Oligossacarídeos/fisiologia , Estrutura Quaternária de Proteína , Receptores Virais/fisiologia , Ensaio de Placa Viral , Internalização do Vírus
16.
J Virol ; 83(24): 12895-906, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19793813

RESUMO

The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.


Assuntos
Poliproteínas/metabolismo , Proteínas não Estruturais Virais/química , Replicação Viral , Adenosina Trifosfatases/metabolismo , Cristalização , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Helicases/fisiologia , Serina Endopeptidases/química , Serina Endopeptidases/fisiologia , Proteínas não Estruturais Virais/fisiologia
17.
Commun Biol ; 3: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909201

RESUMO

Enteroviruses cause a range of human and animal diseases, some life-threatening, but there remain no licenced anti-enterovirus drugs. However, a benzene-sulfonamide derivative and related compounds have been shown recently to block infection of a range of enteroviruses by binding the capsid at a positively-charged surface depression conserved across many enteroviruses. It has also been established that glutathione is essential for the assembly of many enteroviruses, interacting with the capsid proteins to facilitate the formation of the pentameric assembly intermediate, although the mechanism is unknown. Here we show, by high resolution structure analyses of enterovirus F3, that reduced glutathione binds to the same interprotomer pocket as the benzene-sulfonamide derivative. Bound glutathione makes strong interactions with adjacent protomers, thereby explaining the underlying biological role of this druggable binding pocket and delineating the pharmacophore for potential antivirals.


Assuntos
Proteínas do Capsídeo/genética , Enterovirus/fisiologia , Glutationa/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Enterovirus/genética , Alinhamento de Sequência
18.
Artigo em Inglês | MEDLINE | ID: mdl-19255465

RESUMO

The structure of the MarR-family transcription factor NMB1585 from Neisseria meningitidis has been solved using data extending to a resolution of 2.1 A. Overall, the dimeric structure resembles those of other MarR proteins, with each subunit comprising a winged helix-turn-helix (wHtH) domain connected to an alpha-helical dimerization domain. The spacing of the recognition helices of the wHtH domain indicates that NMB1585 is pre-configured for DNA binding, with a putative inducer pocket that is largely occluded by the side chains of two aromatic residues (Tyr29 and Trp53). NMB1585 was shown to bind to its own promoter region in a gel-shift assay, indicating that the protein acts as an auto-repressor.


Assuntos
Proteínas de Bactérias/química , Neisseria meningitidis/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Escherichia coli/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 6): 597-600, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19478440

RESUMO

The interaction between the TNF-family molecule receptor activator of NF-kappaB ligand (RANKL) and its receptor RANK induces osteoclast formation, activation and survival in the process of bone remodelling. RANKL-RANK also plays critical roles in T-cell/dendritic cell communication and lymph-node formation and in a variety of pathologic conditions such as tumour-cell migration and bone metastasis. Both the ectodomain of mouse RANKL and the extracellular domain of mouse RANK have been cloned, expressed and purified. Crystals of RANK alone and of RANK in complex with RANKL have been obtained that are suitable for structure determination.


Assuntos
Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cristalização , Coleta de Dados , Escherichia coli/genética , Vetores Genéticos , Glutationa Transferase/metabolismo , Histidina/química , Corpos de Inclusão/metabolismo , Camundongos , Dados de Sequência Molecular , Peso Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Ligante RANK/química , Receptor Ativador de Fator Nuclear kappa-B/química , Receptor Ativador de Fator Nuclear kappa-B/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Rotação , Solubilidade , Estatística como Assunto , Difração de Raios X
20.
Nat Commun ; 10(1): 1456, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926810

RESUMO

Many of the largest known viruses belong to the PRD1-adeno structural lineage characterised by conserved pseudo-hexameric capsomers composed of three copies of a single major capsid protein (MCP). Here, by high-resolution cryo-EM analysis, we show that a class of archaeal viruses possess hetero-hexameric MCPs which mimic the PRD1-adeno lineage trimer. These hetero-hexamers are built from heterodimers and utilise a jigsaw-puzzle system of pegs and holes, and underlying minor capsid proteins, to assemble the capsid laterally from the 5-fold vertices. At these vertices proteins engage inwards with the internal membrane vesicle whilst 2-fold symmetric horn-like structures protrude outwards. The horns are assembled from repeated globular domains attached to a central spine, presumably facilitating multimeric attachment to the cell receptor. Such viruses may represent precursors of the main PRD1-adeno lineage, similarly engaging cell-receptors via 5-fold spikes and using minor proteins to define particle size.


Assuntos
Vírus de Archaea/fisiologia , Montagem de Vírus/fisiologia , Vírus de Archaea/química , Vírus de Archaea/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA