Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Obstet Gynecol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663662

RESUMO

BACKGROUND: Electronic fetal monitoring is used in most US hospital births but has significant limitations in achieving its intended goal of preventing intrapartum hypoxic-ischemic injury. Novel deep learning techniques can improve complex data processing and pattern recognition in medicine. OBJECTIVE: This study aimed to apply deep learning approaches to develop and validate a model to predict fetal acidemia from electronic fetal monitoring data. STUDY DESIGN: The database was created using intrapartum electronic fetal monitoring data from 2006 to 2020 from a large, multisite academic health system. Data were divided into training and testing sets with equal distribution of acidemic cases. Several different deep learning architectures were explored. The primary outcome was umbilical artery acidemia, which was investigated at 4 clinically meaningful thresholds: 7.20, 7.15, 7.10, and 7.05, along with base excess. The receiver operating characteristic curves were generated with the area under the receiver operating characteristic assessed to determine the performance of the models. External validation was performed using a publicly available Czech database of electronic fetal monitoring data. RESULTS: A total of 124,777 electronic fetal monitoring files were available, of which 77,132 had <30% missingness in the last 60 minutes of the electronic fetal monitoring tracing. Of these, 21,041 were matched to a corresponding umbilical cord gas result, of which 10,182 were time-stamped within 30 minutes of the last electronic fetal monitoring reading and composed the final dataset. The prevalence rates of the outcomes in the data were 20.9% with a pH of <7.2, 9.1% with a pH of <7.15, 3.3% with a pH of <7.10, and 1.3% with a pH of <7.05. The best performing model achieved an area under the receiver operating characteristic of 0.85 at a pH threshold of <7.05. When predicting the joint outcome of both pH of <7.05 and base excess of less than -10 meq/L, an area under the receiver operating characteristic of 0.89 was achieved. When predicting both pH of <7.20 and base excess of less than -10 meq/L, an area under the receiver operating characteristic of 0.87 was achieved. At a pH of <7.15 and a positive predictive value of 30%, the model achieved a sensitivity of 90% and a specificity of 48%. CONCLUSION: The application of deep learning methods to intrapartum electronic fetal monitoring analysis achieves promising performance in predicting fetal acidemia. This technology could help improve the accuracy and consistency of electronic fetal monitoring interpretation.

2.
PLoS One ; 19(1): e0296283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38181002

RESUMO

West Nile virus (WNV), a flavivirus transmitted by mosquito bites, causes primarily mild symptoms but can also be fatal. Therefore, predicting and controlling the spread of West Nile virus is essential for public health in endemic areas. We hypothesized that socioeconomic factors may influence human risk from WNV. We analyzed a list of weather, land use, mosquito surveillance, and socioeconomic variables for predicting WNV cases in 1-km hexagonal grids across the Chicago metropolitan area. We used a two-stage lightGBM approach to perform the analysis and found that hexagons with incomes above and below the median are influenced by the same top characteristics. We found that weather factors and mosquito infection rates were the strongest common factors. Land use and socioeconomic variables had relatively small contributions in predicting WNV cases. The Light GBM handles unbalanced data sets well and provides meaningful predictions of the risk of epidemic disease outbreaks.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Febre do Nilo Ocidental/epidemiologia , Chicago/epidemiologia , Fatores de Risco , Surtos de Doenças
3.
Proc Mach Learn Res ; 209: 350-378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576024

RESUMO

Fair calibration is a widely desirable fairness criteria in risk prediction contexts. One way to measure and achieve fair calibration is with multicalibration. Multicalibration constrains calibration error among flexibly-defined subpopulations while maintaining overall calibration. However, multicalibrated models can exhibit a higher percent calibration error among groups with lower base rates than groups with higher base rates. As a result, it is possible for a decision-maker to learn to trust or distrust model predictions for specific groups. To alleviate this, we propose proportional multicalibration, a criteria that constrains the percent calibration error among groups and within prediction bins. We prove that satisfying proportional multicalibration bounds a model's multicalibration as well its differential calibration, a fairness criteria that directly measures how closely a model approximates sufficiency. Therefore, proportionally calibrated models limit the ability of decision makers to distinguish between model performance on different patient groups, which may make the models more trustworthy in practice. We provide an efficient algorithm for post-processing risk prediction models for proportional multicalibration and evaluate it empirically. We conduct simulation studies and investigate a real-world application of PMC-postprocessing to prediction of emergency department patient admissions. We observe that proportional multicalibration is a promising criteria for controlling simultaneous measures of calibration fairness of a model over intersectional groups with virtually no cost in terms of classification performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA