Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 69(4): 636-647.e7, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29429926

RESUMO

The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , Ribossomos/fisiologia , Estresse Fisiológico , Regiões 5' não Traduzidas , Adenosina/farmacologia , Animais , Células Cultivadas , Códon de Iniciação , Fator de Iniciação 2 em Eucariotos/genética , Fibroblastos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , RNA Mensageiro/metabolismo
2.
Mol Cell ; 68(3): 504-514.e7, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29107534

RESUMO

In eukaryotic cells, protein synthesis typically begins with the binding of eIF4F to the 7-methylguanylate (m7G) cap found on the 5' end of the majority of mRNAs. Surprisingly, overall translational output remains robust under eIF4F inhibition. The broad spectrum of eIF4F-resistant translatomes is incompatible with cap-independent translation mediated by internal ribosome entry sites (IRESs). Here, we report that N6-methyladenosine (m6A) facilitates mRNA translation that is resistant to eIF4F inactivation. Depletion of the methyltransferase METTL3 selectively inhibits translation of mRNAs bearing 5' UTR methylation, but not mRNAs with 5' terminal oligopyrimidine (TOP) elements. We identify ABCF1 as a critical mediator of m6A-promoted translation under both stress and physiological conditions. Supporting the role of ABCF1 in m6A-facilitated mRNA translation, ABCF1-sensitive transcripts largely overlap with METTL3-dependent mRNA targets. By illustrating the scope and mechanism of eIF4F-independent mRNA translation, these findings reshape our current perceptions of cellular translational pathways.


Assuntos
Adenosina/análogos & derivados , Fator de Iniciação 4F em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Capuzes de RNA/genética , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina/farmacologia , Fator de Iniciação 4F em Eucariotos/genética , Células HeLa , Humanos , Sítios Internos de Entrada Ribossomal , Metiltransferases/genética , Metiltransferases/metabolismo , Capuzes de RNA/efeitos dos fármacos , RNA Mensageiro/genética
3.
Aquac Nutr ; 2023: 4805919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034828

RESUMO

Research was conducted on the growth performance and nutritional quality of Chinese mitten crabs (Eriocheir sinensis) during a 62-day growing period in a symbiotic coculture comprising rice and crab. Culture experiments were conducted in three rice fields of equal size (996 m2). On days 0 (July 15, D0), 15 (July 30, D15), 31 (August 15, D31), 46 (August 30, D46), and 62 (September 2, D62), tissue samples of 50 female E. sinensis were collected randomly from each rice field. The results showed that the serum growth hormone (GH) content and muscle ecdysone receptor (EcR) mRNA expression levels were higher in the D31 and D46 groups; the content of serum 20-hydroxyecdysone (20-HE) and the mRNA expression levels of retinoid X receptor (RXR), insulin-like growth factor 2 (IGF2), and chitinase (CHI) reached the maximum in the D31 group. Muscle crude protein content gradually increased; hepatopancreas crude protein and crude lipid content began to decrease after reaching the maximum value in the D0 and D15 groups, respectively; the contents of crude protein and crude lipid in the ovary significantly increased in the D46 and D62 groups (P < 0.05). The content of muscle essential amino acids (EAA) reached the maximum in the D46 group; the hepatopancreas EAA content began to decrease significantly in the D31 group (P < 0.05); and the EAA content of the ovary decreased significantly after reaching the maximum value in the D46 group (P < 0.05). The muscle contents of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), polyunsaturated fatty acids (PUFA), and n-3 polyunsaturated fatty acids (n-3PUFA) and the ratio of n-3 polyunsaturated fatty acids/n-6 polyunsaturated fatty acids (n3/n6) decreased significantly in the D31 group (P < 0.05); the hepatopancreas contents of EPA, PUFA, n-3PUFA, and n-6 polyunsaturated fatty acids (n-6PUFA) and the ratio of n3/n6 began to decrease after reaching the maximum value in the D31 group, ethyl behenate (21:0), tetracosanoic acid (24:0), DPA, and DHA contents were detected for the first time in the D31 group; the ovary PUFA, n-3PUFA contents, and n3/n6 ratio of the D46 and D62 groups were significantly lower than those of the D31 group (P < 0.05). During the experimental conditions described here, female E. sinensis raised in rice fields reached rapid growth from August 15 to August 30. Additionally, the nutritional quality of the female E. sinensis edible tissues (muscle, hepatopancreas, and ovary) began to decline after August 15, when sufficient nutrients such as protein, lipid, EAA, and PUFA should be provided to the female E. sinensis.

4.
Fish Shellfish Immunol ; 127: 703-714, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35817364

RESUMO

To study the effects of dietary methionine on growth performance, immunity, antioxidant capacity, protein metabolism, inflammatory response and apoptosis factors in Chinese mitten crabs (Eriocheir sinensis). Five diets with different methionine levels (0.63%, 0.85%, 1.06%, 1.25% and 1.47%) were fed to E. sinensis for 8 weeks. Results showed that in the 1.25% Met group, both growth performance and feed utilization were significantly increased. The crude protein content of crab muscle in the 1.06% and 1.25% Met groups was significantly higher than that in the control group. The immune and antioxidant enzyme activities, as well as gene expression levels of anti-lipopolysaccharide factor 1 (ALF1), Crustin-1, prophenoloxidase (proPO), cap 'n' collar isoform C (CncC) in 1.25% Met group were significantly higher than other groups. The activities of adenosine deaminase (ADA) and glutamate transaminase (GPT) in serum decreased first and then increased with the increase of methionine content, while the changes of ADA and GPT in hepatopancreas increased first and then decreased. 1.25% Met group exhibited significantly increased levels of GOT, GPT, and ADA compared to the control group. 1.25% Met diet group significantly up-regulated protein synthesis and anti-apoptotic factors, and significantly down-regulated inflammatory and pro-apoptotic factors in hepatopancreas. At 1.25% in the diet, methionine was found to boost E. sinensis growth, muscle protein deposition and immunity, as well as its antioxidant capacity. Combined with the above results, based on the expression of factors involved in the mammalian target of rapamycin (mTOR) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway, it is proved that methionine can not only promote protein metabolism, improve feed utilization, but also alleviate the inflammatory response and apoptosis caused by oxidative stress in the body.


Assuntos
Antioxidantes , Braquiúros , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Braquiúros/metabolismo , China , Dieta , Suplementos Nutricionais , Imunidade Inata , Mamíferos/metabolismo , Metionina/farmacologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Mol Biol Rep ; 49(5): 4095-4099, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35536498

RESUMO

BACKGROUND: Picea brachytyla is a unique tree species in China. Due to being extensively exploited in the past, it is listed as Vulnerable in the IUCN Red List. It is mainly distributed across the Hengduan and Daba-Qinglin mountains and has been found in other areas including Sichuan Province and Qinghai Province, China. Microsatellites, or simple sequence repeats (SSRs), are widely used in correlational studies of genetic protection. Few markers have been developed for P. brachytyla because of the small number of trees and scholarly resources available for study. METHODS AND RESULTS: The genomic DNA of P. brachytyla was sequenced using the DNBSEQ platform, and unigenes were obtained after assembly and deredundancy. Of the 100 primer pairs screened, we isolated 10 useful microsatellite loci from P. brachytyla genes. The observed and expected heterozygosity values ranged from 0.173 (P24) to 0.788 (P79; mean 0.469) and 0.199 (P87) to 0.911 (P79; mean 0.700), respectively. Polymorphism-information content (PIC) ranged from 0.190 (P84) to 0.904 (P79; mean 0.666). Only P84 and P72 were in a Hardy-Weinberg equilibrium (P > 0.05) in the different P. brachytyla populations. All the levels of linkage disequilibrium (LD) were high for the 10 SSR loci indicating that there were no autocorrelations among the 10 SSR loci. CONCLUSIONS: The novel polymorphic microsatellite markers showed high polymorphism for P. brachytyla. These polymorphic microsatellites can provide a basis for future conservation and genetic research on this rare plant species.


Assuntos
Picea , China , Desequilíbrio de Ligação/genética , Repetições de Microssatélites/genética , Picea/genética , Polimorfismo Genético/genética
6.
J Asian Nat Prod Res ; 24(2): 179-189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33555224

RESUMO

In this study, a liquid chromatography-tandem multi-stage mass spectrometry (LC/MSn) method was established to characterize the metabolites of TRG in monkeys and dogs. A total of seven metabolites of TRG besides the prototype were found, which were identified as TR (M1), TRN (M2), trans-resveratrol-4'-O-glucuronide (M2'), trans-resveratrol-3-O-glucoside-4'-O-glucuronide (M3), trans-resveratrol-3-O-glucoside-5-O-glucuronide (M3'), trans-resveratrol-3-sulfate (M4) and trans-resveratrol-4'-sulfate (M4'). Additionally, the metabolic pathways of TRG in monkeys and dogs were proposed. There were also species differences of metabolism of TRG between monkeys and dogs.


Assuntos
Glucosídeos , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cães , Haplorrinos , Estrutura Molecular , Estilbenos
7.
BMC Bioinformatics ; 22(1): 7, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407098

RESUMO

BACKGROUND: Accurate prediction of binding between class I human leukocyte antigen (HLA) and neoepitope is critical for target identification within personalized T-cell based immunotherapy. Many recent prediction tools developed upon the deep learning algorithms and mass spectrometry data have indeed showed improvement on the average predicting power for class I HLA-peptide interaction. However, their prediction performances show great variability over individual HLA alleles and peptides with different lengths, which is particularly the case for HLA-C alleles due to the limited amount of experimental data. To meet the increasing demand for attaining the most accurate HLA-peptide binding prediction for individual patient in the real-world clinical studies, more advanced deep learning framework with higher prediction accuracy for HLA-C alleles and longer peptides is highly desirable. RESULTS: We present a pan-allele HLA-peptide binding prediction framework-MATHLA which integrates bi-directional long short-term memory network and multiple head attention mechanism. This model achieves better prediction accuracy in both fivefold cross-validation test and independent test dataset. In addition, this model is superior over existing tools regarding to the prediction accuracy for longer ligand ranging from 11 to 15 amino acids. Moreover, our model also shows a significant improvement for HLA-C-peptide-binding prediction. By investigating multiple-head attention weight scores, we depicted possible interaction patterns between three HLA I supergroups and their cognate peptides. CONCLUSION: Our method demonstrates the necessity of further development of deep learning algorithm in improving and interpreting HLA-peptide binding prediction in parallel to increasing the amount of high-quality HLA ligandome data.


Assuntos
Biologia Computacional/métodos , Antígenos de Histocompatibilidade Classe I , Redes Neurais de Computação , Peptídeos , Ligação Proteica , Algoritmos , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Modelos Estatísticos , Peptídeos/química , Peptídeos/metabolismo
8.
Nature ; 526(7574): 591-4, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26458103

RESUMO

The most abundant mRNA post-transcriptional modification is N(6)-methyladenosine (m(6)A), which has broad roles in RNA biology. In mammalian cells, the asymmetric distribution of m(6)A along mRNAs results in relatively less methylation in the 5' untranslated region (5'UTR) compared to other regions. However, whether and how 5'UTR methylation is regulated is poorly understood. Despite the crucial role of the 5'UTR in translation initiation, very little is known about whether m(6)A modification influences mRNA translation. Here we show that in response to heat shock stress, certain adenosines within the 5'UTR of newly transcribed mRNAs are preferentially methylated. We find that the dynamic 5'UTR methylation is a result of stress-induced nuclear localization of YTHDF2, a well-characterized m(6)A 'reader'. Upon heat shock stress, the nuclear YTHDF2 preserves 5'UTR methylation of stress-induced transcripts by limiting the m(6)A 'eraser' FTO from demethylation. Remarkably, the increased 5'UTR methylation in the form of m(6)A promotes cap-independent translation initiation, providing a mechanism for selective mRNA translation under heat shock stress. Using Hsp70 mRNA as an example, we demonstrate that a single m(6)A modification site in the 5'UTR enables translation initiation independent of the 5' end N(7)-methylguanosine cap. The elucidation of the dynamic features of 5'UTR methylation and its critical role in cap-independent translation not only expands the breadth of physiological roles of m(6)A, but also uncovers a previously unappreciated translational control mechanism in heat shock response.


Assuntos
Adenosina/análogos & derivados , Regulação da Expressão Gênica , Resposta ao Choque Térmico , Metilação , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas/genética , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , Camundongos , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/metabolismo , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/genética
9.
J Cell Biochem ; 121(2): 1599-1609, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31544984

RESUMO

Pre-eclampsia is a common complication during pregnancy; however, the underlying mechanisms of the crosstalk between low-density lipoprotein receptor-related protein 6 (LRP6) and autophagy in trophoblast cells are still not fully explored. Messenger RNA (mRNA) and protein levels of LRP6, beclin 1, Unc-51-like autophagy activating kinase 1 (ULK1), p62, vimentin, matrix metallopeptidase-9 (MMP-9), ß-catenin, c-Myc, and Rab7, as well as the ratio of LC3-II/LC3-I, were analysed by quantitative real-time polymerase chain reaction or Western blot analysis, respectively. An MTT assay was used to measure cell growth, and transwell and wound healing assays were carried out to evaluate the invasion and migration abilities of the trophoblasts used. An immunofluorescence assay was used to measure LC3. The mRFP-GFP-LC3 tandem fluorescence assay was applied to detect autophagic flow. LRP6 overexpression was achieved by constructing pcDNA3.1-LRP6 vectors. LRP6 was expressed at low levels in HTR-8/SVneo cells under hypoxia/reoxygenation (H/R) conditions. H/R inhibited the activation of autophagy. LRP6 overexpression promoted cell proliferation and activated autophagy, which led to the upregulation of beclin 1 and ULK1, as well as the ratio of LC3-II/LC3-I and the downregulation of p62. Furthermore, LRP6 overexpression elevated the migration and invasion abilities of the indicated cells and increased vimentin and MMP-9 expression levels. Furthermore, LRP6 upregulated Rab7 and activated autophagy through the Wnt/ß-catenin pathway. The late autophagy inhibitor bafilomycin A1 (Baf-A1) and the Wnt/ß-catenin pathway inhibitor PKF115-584 reversed the effects of LRP6 on trophoblast autophagy, migration and invasion. LRP6 promotes Rab7-mediated autophagy by activating the Wnt/ß-catenin pathway, which leads to increasing migration and invasion of trophoblast cells. Our study paves a new avenue for clinical treatment, and LRP6 may serve as an essential target in pre-eclampsia.


Assuntos
Autofagia , Movimento Celular , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Trofoblastos/metabolismo , Via de Sinalização Wnt , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , beta Catenina/genética , beta Catenina/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
10.
Biochem Biophys Res Commun ; 531(2): 172-179, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32788070

RESUMO

Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, are the major cause of X-linked retinitis pigmentosa (RP), in which exon open reading frame 15 (ORF15) of RPGR has been implicated to play a substantial role. We identified a novel hemizygous missense mutation E585K of RPGR from whole-exome sequencing of RP. RNA-Seq analysis and functional study were conducted to investigate the underlying pathogenic mechanism of the mutation. Our results showed that the mutation actually affected RPGR ORF15 splicing. RNA-Seq analysis of the human retina followed by validation in cells revealed a complex splicing pattern near the 3' boundary of RPGR exon 14 in the ORF15 region, resulting from a variety of alternative splicing events (ASEs). The wildtype RPGR mini-gene expressed in human 293T cells confirmed these ASEs in vitro. In contrast, without new RNA species detected, the mutant mini-gene disrupted the splicing pattern of the ORF15 region, and caused loss of RPGR transcript heterogeneity. The RNA species derived from the mutant mini-gene were predominated by a minor out-of-frame transcript that was also observed in wildtype RPGR, resulting from an upstream alternative 5' splice site in exon 14. Our findings therefore provide insights into the influence of RPGR exonic mutations on alternative splicing of the ORF15 region, and the underlying molecular mechanism of RP.


Assuntos
Proteínas do Olho/genética , Mutação de Sentido Incorreto/genética , Fases de Leitura Aberta/genética , Retinose Pigmentar/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Proteínas do Olho/química , Hemizigoto , Humanos , Masculino , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Nucleic Acids Res ; 45(20): 11941-11953, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28981728

RESUMO

In the human genome, translation initiation from non-AUG codons plays an important role in various gene regulation programs. However, mechanisms regulating the non-AUG initiation rate remain poorly understood. Here, we show that the non-AUG initiation rate is nearly consistent under a fixed nucleotide context in various human and insect cells. Yet, it ranges from <1% to nearly 100% compared to AUG translation, depending on surrounding sequences, including Kozak, and possibly additional nucleotide contexts. Mechanistically, this range of non-AUG initiation is controlled in part, by the eIF5-mimic protein (5MP). 5MP represses non-AUG translation by competing with eIF5 for the Met-tRNAi-binding factor eIF2. Consistently, eIF5 increases, whereas 5MP decreases translation of NAT1/EIF4G2/DAP5, whose sole start codon is GUG. By modulating eIF5 and 5MP1 expression in combination with ribosome profiling we identified a handful of previously unknown non-AUG initiation sites, some of which serve as the exclusive start codons. If the initiation rate for these codons is low, then an AUG-initiated downstream ORF prevents the generation of shorter, AUG-initiated isoforms. We propose that the homeostasis of the non-AUG translatome is maintained through balanced expression of eIF5 and 5MP.


Assuntos
Códon de Iniciação/genética , Proteínas de Ligação a DNA/genética , Fator de Iniciação 5 em Eucariotos/genética , Genoma Humano , Animais , Ligação Competitiva , Linhagem Celular , Linhagem Celular Tumoral , Códon de Iniciação/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 5 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Homeostase/genética , Humanos , Ligação Proteica , Biossíntese de Proteínas/genética , Ribossomos/genética , Ribossomos/metabolismo
12.
EMBO J ; 33(8): 878-89, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24596251

RESUMO

mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3' processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Células-Tronco/fisiologia , Animais , Camundongos , Modelos Biológicos , Poliadenilação
13.
Nat Methods ; 12(2): 147-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486063

RESUMO

Cells have evolved exquisite mechanisms to fine-tune the rate of protein synthesis in response to stress. Systemic mapping of start-codon positions and precise measurement of the corresponding initiation rate would transform our understanding of translational control. Here we present quantitative translation initiation sequencing (QTI-seq), with which the initiating ribosomes can be profiled in real time at single-nucleotide resolution. Resultant initiation maps not only delineated variations of start-codon selection but also highlighted a dynamic range of initiation rates in response to nutrient starvation. The integrated data set provided unique insights into principles of alternative translation and mechanisms controlling different aspects of translation initiation. With RiboTag mice, QTI-seq permitted tissue-specific profiling of initiating ribosomes in vivo. Liver cell-specific ribosome profiling uncovered a robust translational reprogramming of the proteasome system in fasted mice. Our findings illuminated the prevalence and dynamic nature of translational regulation pivotal to physiological adaptation in vivo.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Animais , Técnicas de Cultura de Células , Meios de Cultura , Células HEK293 , Humanos , Fígado/metabolismo , Camundongos Transgênicos , Iniciação Traducional da Cadeia Peptídica/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Estresse Fisiológico/genética
14.
RNA ; 22(11): 1719-1727, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613579

RESUMO

It is common wisdom that codon usage bias has evolved in the selection for efficient translation, in which highly expressed genes are encoded predominantly by optimal codons. However, a growing body of evidence suggests regulatory roles for non-optimal codons in translation dynamics. Here we report that in mammalian cells, non-optimal codons play a critical role in promoting selective mRNA translation during amino acid starvation. During starvation, in contrast to genes encoding ribosomal proteins whose translation is highly sensitive to amino acid deprivation, translation of genes involved in the cellular protein degradation pathways remains unaffected. We found that these two gene groups bear different codon composition, with non-optimal codons being highly enriched in genes encoding the ubiquitin-proteasome system. Supporting the selective tRNA charging model originally proposed in Escherichia coli, we demonstrated that tRNA isoacceptors decoding rare codons are maintained in translating ribosomes under amino acid starvation. Finally, using luciferase reporters fused with endogenous gene-derived sequences, we show that codon optimality contributes to differential mRNA translation in response to amino acid starvation. These results highlight the physiological significance of codon usage bias in cellular adaptation to stress.


Assuntos
Aminoácidos/metabolismo , Códon , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Transferência/genética , Ribossomos/metabolismo
15.
Environ Monit Assess ; 190(12): 739, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30460409

RESUMO

Tree invasion has the potential to negatively affect biodiversity and ecosystems, with invasive alien trees (IATs) expanding widely in protected areas (PAs) across different habitats. Thus, the effectiveness of PAs might be reduced. Investigation of the distributions of IAT is urgently required to improve the effective conservation management of PAs. We projected the potential distributions of 10 IATs, which included Acacia mearnsii, Ardisia elliptica, Cecropia peltata, Cinchona pubescens, Leucaena leucocephala, Melaleuca quinquenervia, Miconia calvescens, Morella faya, Prosopis glandulosa, and Spathodea campanulata, that have a serious influence on global biodiversity and assessed the distribution possibilities of these IATs in PAs based on the PA categories of the International Union for Conservation of Nature (IUCN). The overall potential distributions of these 10 IATs included Latin America, central and southern Africa, southeastern Asia, eastern Australia and New Zealand, and western Europe. Annual mean temperature, temperature seasonality, annual precipitation, and soil bulk density were found to be important environmental variables for the potential distributions of these IATs. Overall, A. mearnsii, A. elliptica, C. peltata, L. leucocephala, M. quinquenervia, M. calvescens, and S. campanulata were distributed mainly in the IUCN PA categories of national parks and PAs with sustainable use of natural resources. We proposed the following for conservation management of PAs: (1) completion of species inventories for PAs, (2) better understanding of factors driving invasions in PAs, (3) assessment of the efficiency of management within particular PAs, and (4) evaluation of changes in trends regarding plant invasions in PAs under climate change conditions.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Espécies Introduzidas , Árvores/classificação , África , Sudeste Asiático , Austrália , Biodiversidade , Ecossistema , Europa (Continente) , América Latina , Nova Zelândia , Tempo (Meteorologia)
16.
Protein Expr Purif ; 132: 1-8, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28042093

RESUMO

Human respiratory syncytial virus (HRSV) is a main cause of lower respiratory tract infections in infants and the elderly. Glycoprotein (G) is major antigen on the viral surface, and plays a key role for virus entry. Therefore, purification of the glycoprotein of HRSV is critical for the development of HRSV vaccine and serological diagnosis. In this study, we report the design and characterization of glycoprotein engineered rationally to enhance the protein solubility and to facilitate efficient purification. We permuted HRSV glycoproteins with two tags: (i) an immunoglobulin (Ig) M signal peptide and a protein A B domain tag to render HRSV glycoprotein secret into the culture media and (ii) a foldon and 6 × histidine tag with or without transmembrane domain. Three recombinant baculoviruses were constructed: (i) transmembrane-truncated HRSV glycoprotein (amino acid positions 66-298) inserted with the N-terminal IgM signal peptide and protein A B domain (MG-GΔTM), (ii) truncated HRSV glycoprotein (amino acid positions 66-298) fused with a C-terminal foldon and 6 × histidine tag (GΔTM-FH), and (iii) full-length HRSV glycoprotein (amino acid positions 1-298) fused with a C-terminal foldon and 6 × histidine tag (G-FH). Highly soluble recombinant MG-GΔTM protein was clearly purified using one-step affinity chromatography with IgG-sepharose resin, whereas the recombinant G-FH protein and truncated GΔTM-FH were purified partially using nickel-resin. Although, the antigenicity of GΔTM-FH was stronger than highly mannose-rich MG-GΔTM protein, MG-GΔTM induced neutralizing antibodies efficiently in the mice to protect from infectious HRSV.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Expressão Gênica , Glicoproteínas , Vírus Sinciciais Respiratórios/genética , Proteínas Virais , Animais , Feminino , Glicoproteínas/biossíntese , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicoproteínas/isolamento & purificação , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Vírus Sinciciais Respiratórios/imunologia , Células Sf9 , Spodoptera , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/isolamento & purificação
17.
Hum Mol Genet ; 23(10): 2593-603, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24368418

RESUMO

MicroRNAs (miRNAs) have been established as important negative post-transcriptional regulators for gene expression. Within the past decade, miRNAs targeting transcription factors (TFs) has emerged as an important mechanism for gene expression regulation. Here, we tested the hypothesis that in TF 3'UTRs, human-specific single nucleotide change(s) that create novel miRNA recognition elements (MREs) contribute to species-specific differences in TF expression. From several potential human-specific TF MREs, one candidate, a member of the Forkhead Box O (FOXO) subclass in the Forkhead family known as Forkhead Box O1 (FOXO1; FKHR; NM_002015) was tested further. Human FOXO1 contains two sites predicted to confer miR-183-mediated post-transcriptional regulation: one specific to humans and the other conserved. Utilizing dual luciferase expression reporters, we show that only the human FOXO1 3'UTR contains a functional miR-183 site, not found in chimpanzee or mouse 3'untranslated regions (UTRs). Site-directed mutagenesis supports functionality of the human-specific miR-183 site, but not the conserved miR-183 site. Via overexpression and target site protection assays, we show that human FOXO1 is regulated by miR-183, but mouse FOXO1 is not. Finally, FOXO1-regulated cellular phenotypes, including cell invasion and proliferation, are impacted by miR-183 targeting only in human cells. These results provide strong evidence for human-specific gain of TF MREs, a process that may underlie evolutionary differences between phylogenic groups.


Assuntos
Fatores de Transcrição Forkhead/genética , MicroRNAs/genética , Interferência de RNA , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Movimento Celular , Proliferação de Células , Evolução Molecular , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Macaca mulatta/genética , Camundongos , Pan troglodytes/genética
18.
Nucleic Acids Res ; 42(Database issue): D845-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203712

RESUMO

Proper selection of the translation initiation site (TIS) on mRNAs is crucial for the production of desired protein products. Recent studies using ribosome profiling technology uncovered a surprising variety of potential TIS sites in addition to the annotated start codon. The prevailing alternative translation reshapes the landscape of the proteome in terms of diversity and complexity. To identify the hidden coding potential of the transcriptome in mammalian cells, we developed global translation initiation sequencing (GTI-Seq) that maps genome-wide TIS positions at nearly a single nucleotide resolution. To facilitate studies of alternative translation, we created a database of alternative TIS sites identified from human and mouse cell lines based on multiple GTI-Seq replicates. The TISdb, available at http://tisdb.human.cornell.edu, includes 6991 TIS sites from 4961 human genes and 9973 TIS sites from 5668 mouse genes. The TISdb website provides a simple browser interface for query of high-confidence TIS sites and their associated open reading frames. The output of search results provides a user-friendly visualization of TIS information in the context of transcript isoforms. Together, the information in the database provides an easy reference for alternative translation in mammalian cells and will support future investigation of novel translational products.


Assuntos
Códon de Iniciação , Bases de Dados Genéticas , Iniciação Traducional da Cadeia Peptídica , Animais , Genoma , Humanos , Internet , Camundongos , Fases de Leitura Aberta
19.
RNA ; 19(12): 1781-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24149845

RESUMO

mRNA 3' processing is dynamically regulated spatially and temporally. However, the underlying mechanisms remain poorly understood. CstF64τ is a paralog of the general mRNA 3' processing factor, CstF64, and has been implicated in mediating testis-specific mRNA alternative polyadenylation (APA). However, the functions of CstF64τ in mRNA 3' processing have not been systematically investigated. We carried out a comprehensive characterization of CstF64τ and compared its properties to those of CstF64. In contrast to previous reports, we found that both CstF64 and CstF64τ are widely expressed in mammalian tissues, and their protein levels display tissue-specific variations. We further demonstrated that CstF64 and CstF64τ have highly similar RNA-binding specificities both in vitro and in vivo. CstF64 and CstF64τ modulate one another's expression and play overlapping as well as distinct roles in regulating global APA profiles. Interestingly, protein interactome analyses revealed key differences between CstF64 and CstF64τ, including their interactions with another mRNA 3' processing factor, symplekin. Together, our study of CstF64 and CstF64τ revealed both functional overlap and specificity of these two important mRNA 3' processing factors and provided new insights into the regulatory mechanisms of mRNA 3' processing.


Assuntos
Poliadenilação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Fator Estimulador de Clivagem , Sequência Consenso , Expressão Gênica , Perfilação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química
20.
J Med Virol ; 87(1): 10-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24889391

RESUMO

An outbreak of upper respiratory tract infections associated with human adenovirus (HAdV) occurred on a national scale in Korea from September to December 2010, following a major H1N1 influenza pandemic. Data from the Korea Influenza and Respiratory Surveillance System (KINRESS) showed an unusually high positive rate accounting for up to 20% of all diagnosed cases. To determine the principal cause of the outbreak, direct polymerase chain reaction (PCR) amplification followed by sequence analysis targeting parts of the hexon gene of HAdV was performed. Serotypes of 1,007 PCR-diagnosed HAdV-positive samples from patients with an acute upper respiratory tract illness were determined and epidemiological characteristics including major aged group and clinical symptoms were analyzed. The principal symptom of HAdV infections was fever and the vulnerable aged group was 1-5 years old. Based on sequence analysis, HAdV-3 was the predominant serotype in the outbreak, with an incidence of 74.3%. From the beginning of 2010 until May, the major serotypes were HAdV-1, 2, and 5 (70-100%) in any given period. However, an outbreak dominated by HAdV-3 started between July and August and peaked in September. Phylogenetic analysis revealed that there was no genetic variation in HAdV-3. The results demonstrated that an outbreak of upper respiratory illness followed by H1N1 influenza pandemic in Korea was caused mainly by emerged HAdV-3. J.


Assuntos
Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/virologia , Adenovírus Humanos/isolamento & purificação , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Pré-Escolar , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Humanos , Incidência , Lactente , Influenza Humana/epidemiologia , Coreia (Geográfico)/epidemiologia , Masculino , Epidemiologia Molecular , Dados de Sequência Molecular , Pandemias , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência , Sorotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA