RESUMO
The nucleic acid test is still the standard assessment for the diagnosis of coronavirus disease 2019 (COVID-19), which is caused by human infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to supporting the confirmation of disease cases, serological assays are used for the analysis of antibody status and epidemiological surveys. In this study, a single Western blot strip (WBS) coated with multiple Escherichia coli (E. coli)-expressed SARS-CoV-2 antigens was developed for comprehensive studies of antibody profiles in COVID-19 patient sera. The levels of specific antibodies directed to SARS-CoV-2 spike (S), S2, and nucleocapsid (N) proteins were gradually increased with the same tendency as the disease progressed after hospitalization. The signal readouts of S, S2, and N revealed by the multi-antigen-coated WBS (mWBS)-based serological assay (mWBS assay) also demonstrated a positive correlation with the SARS-CoV-2 neutralizing potency of the sera measured by the plaque reduction neutralization test (PRNT) assays. Surprisingly, the detection signals against the unstructured receptor-binding domain (RBD) purified from E. coli inclusion bodies were not observed, although the COVID-19 patient sera exhibited strong neutralizing potency in the PRNT assays, suggesting that the RBD-specific antibodies in patient sera mostly recognize the conformational epitopes. Furthermore, the mWBS assay identified a unique and major antigenic epitope at the residues 1148, 1149, 1152, 1155, and 1156 located within the 1127-1167 fragment of the S2 subunit, which was specifically recognized by the COVID-19 patient serum. The mWBS assay can be finished within 14-16 min by using the automatic platform of Western blotting by thin-film direct coating with suction (TDCS WB). Collectively, the mWBS assay can be applied for the analysis of antibody responses, prediction of the protective antibody status, and identification of the specific epitope. KEY POINTS: ⢠A Western blot strip (WBS) coated with multiple SARS-CoV-2 antigens was developed for the serological assay. ⢠The multi-antigen-coated WBS (mWBS) can be utilized for the simultaneous detection of antibody responses to multiple SARS-CoV-2 antigens. ⢠The mWBS-based serological assay (mWBS assay) identified a unique epitope recognized by the COVID-19 patient serum.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Formação de Anticorpos , COVID-19/diagnóstico , Escherichia coli/genética , Western BlottingRESUMO
Ossification of the ligamentum flavum (OLF) is characterized by a process of ectopic bone formation in the ligamentum flavum. The definitive pathophysiology of OLF still remains unclear, but the epigenetic m6A modification plays an important role in OLF. In addition, no studies have reported the function of ALKBH5 in OLF development. In this study, we investigated the function of the m6A demethylation enzyme ALKBH5 in OLF. To evaluate the function of ALKBH5, OLF tissues and normal ligamentum flavum tissues were collected. In vitro methods, including HE, IHC and western blotting assays, were used to evaluate the association of ALKBH5 with OLF. In addition, we verified the effects of ALKBH5 on osteogenesis using alizarin red and ALP staining. MeRIP q-PCR was performed to investigate the methylation level of BMP2. Moreover, the mechanism of ALKBH5-mediated regulation of the ossification of the ligamentum flavum cells through the AKT signaling pathway was also verified. The present study showed that the expression of ALKBH5 increased in OLF tissues. The overexpression of ALKBH5 increased the expression of osteogenic genes and promoted the ossification of ligamentum flavum cells. Furthermore, BMP2 was significantly enriched in the ligamentum flavum cells of the anti-m6A group compared with those of the IgG group. The overexpression of ALKBH5 led to the activation of p-AKT, and BMP2 was regulated by ALKBH5 through the AKT signaling pathway. ALKBH5 promoted the osteogenesis of the ligamentum flavum cells through BMP2 demethylation and AKT activation. ALKBH5 was shown to be an important demethylation enzyme in OLF development.
Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Proteína Morfogenética Óssea 2 , Ligamento Amarelo , Ossificação Heterotópica , Proteínas Proto-Oncogênicas c-akt , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , Desmetilação , Humanos , Ligamento Amarelo/metabolismo , Ligamento Amarelo/patologia , Ossificação Heterotópica/metabolismo , Osteogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Vértebras TorácicasRESUMO
In this study, dripping drops of water and glycerol/water mixtures from 83 nozzles (in the range of 0.065 mm ≤ Do ≤ 40 mm and 0.043 mm ≤ Di ≤ 35 mm, where Do and Di are the outer and inner diameters, respectively) were systematically investigated for four fluids, three wettable nozzle materials, and various liquid feeding rates under the simple dripping mode condition in an ambient gas, that is, air. It is important to point out that no single characteristic length scale mentioned in the literature can be used to satisfactorily predict all experimental data. A new characteristic parameter, that is, the wetting diameter ( Dw), has been introduced, and its usefulness in predicting the drop size by a simple relation in the whole nozzle range is shown for the first time. The critical wetting diameter ( Dc), which is related to the wettability (or advancing contact angle) of the dripping liquid and the nozzle material, is theoretically derived, and its dimensionless value ( Dc*), normalized by the capillary length (λ), shows an excellent agreement with the experimental results. Five characteristic wetting regimes have been further classified. The Dc* value is important for the dripping drop classification, that is, above which the regime is Di*-dependent and below which it is Di*-independent or mainly Do*-dependent. The characteristics and relationships of the wetting diameter with respect to the nozzle geometry and wettability for dripping drop formation are analyzed and compared in different regimes. A method to stably generate large dripping drops with diameters up to approximately 3 times the capillary length has also been demonstrated.
RESUMO
Thin-film direct coating (TDC) has been successfully used in Western blotting (WB). In this study, the advanced technique of TDC with suction (TDCS) was developed to reduce the consumption amount of antibody by a factor of up to 10(4) in comparison with the amount consumed by the conventional WB using the capillary tube without any need of special micromachining processes. The operation time for completely finishing a high-quality WB can be reduced from 3 h in conventional WB to about 5 min or even less by TDCS. In addition, the signal-to-noise ratio of the immunoblotting by TDCS can be markedly increased. TDCS WB showed a high linearity within a 6-log2 dynamic range for detecting 90-6000 ng of purified recombinant glutathione-S-transferase (GST) proteins and could particularly detect extrinsic GST proteins added in crude Escherichia coli or 293T cell lysates. Moreover, a protein mixture containing bovine serum albumin, GST, and ubiquitin could be specifically probed in parallel with their corresponding antibodies through multichannel TDCS WB. This simple and innovative TDCS WB offers various potential applications in simultaneously finishing multiple antibody-antigen screenings in a fast and single experiment.
RESUMO
A novel thin-film direct coating (TDC) technique was developed to markedly reduce the amount of antibody required for Western blotting (WB). Automatic application of the technique for a few seconds easily and homogeneously coats the specific primary antibody on the polyvinylidene fluoride (PVDF) membrane. While conventional WB requires 0.4 µg of the primary antibody, the proposed technique only uses 4 × 10(-2) µg, which can be reduced further to 4 × 10(-5) µg by reducing the coater width. Moreover, the proposed process reduces antibody probing times from 60 to 10 min. The quantification capability of TDC WB showed high linearity within a 4-log2 dynamic range for detecting target antigen glutathione-S-transferase. Furthermore, TDC WB can specifically detect the extrinsic glutathione-S-transferase added in the Escherichia coli or 293T cell lysate with better staining sensitivity than conventional WB. TDC WB can also clearly probe the intrinsic ß-actin, α-tubulin, and glyceraldehyde 3-phosphate dehydrogenase, which are usually used as control proteins in biological experiments. This novel technique has been shown to not only have valuable potential for increasing WB efficiency but also for providing significant material savings for future biomedical applications.
Assuntos
Western Blotting/instrumentação , Anticorpos/química , Western Blotting/métodos , Escherichia coli/enzimologia , Glutationa Transferase/química , Células HEK293 , Humanos , Membranas Artificiais , Polivinil , Proteínas/químicaRESUMO
We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.
RESUMO
The mediation of the extracellular matrix is one of the major environmental cues to direct cell migration, such as stiffness-dependent durotaxis and adhesiveness-dependent haptotaxis. In this study, we explore another possible contact guidance: roughness dependent topotaxis. Different from previously reported studies on topotaxis that use standard photolithography to create micron or submicron structures that have identical height and different spatial densities, we develop a new method to programmatically fabricate substrates with different patterns of surface roughness using two-photon polymerization. Surface roughness ranging from 0.29 to 1.11 µm can be created by controlling the voxel distance between adjacently cured ellipsoid voxels. Patterned Ormocomp® masters are transferred to polypropylene films using the nanoimprinting method for cell migration study. Our experimental results suggest that MG63 cells can sense the spatial distribution of their underlying extracellar roughness and modulate their migration velocity and direction. Three characteristic behaviors were identified. First, cells have a higher migration velocity on substrates with higher roughness. Second, cells preferred to migrate from regions of higher roughness to lower roughness, and their migration velocity also decreased with descending roughness. Third, the migration velocity remained unchanged on the lower roughness range on a graded substrate with a steeper roughness. The last cell migration characteristic suggests the steepness of the roughness gradient can be another environmental cue in addition to surface roughness. Finally, the combination of two-photon polymerization and nanoimprint methods could become a new fabrication methodology to create better 3D intricate structures for exploring topotactic cell migrations.
RESUMO
The shuttling effect of soluble lithium polysulfides (LiPSs) and the sluggish conversion kinetics of polysulfides into insoluble Li2S2/Li2S severely hinders the practical application of Li-S batteries. Advanced catalysts can capture and accelerate the liquid-solid conversion of polysulfides. Herein, we try to make use of bismuth tantalum oxide with oxygen vacancies as an electrocatalyst to catalyze the conversion of LiPSs by reducing the sulfur reduction reaction (SRR) nucleation energy barrier. Oxygen vacancies in Bi4TaO7 nanoparticles alter the electron band structure to improve instinct electronic conductivity and catalytic activity. In addition, the defective surface could provide unsaturated bonds around the vacancies to enhance the chemisorption capability with LiPSs. Hence, a multidimensional carbon (super P/CNT/Graphene) standing sulfur cathode is prepared by coating oxygen vacancies Bi4TaO7-x nanoparticles, in which the multidimensional carbon (MC) with micropores structure can host sulfur and provide a fast electron/ion pathway, while the outer-coated oxygen vacancies with Bi4TaO7-x with improved electronic conductivity and strong affinities for polysulfides can work as an adsorptive and conductive protective layer to achieve the physical restriction and chemical immobilization of lithium polysulfides as well as speed up their catalytic conversion. Benefiting from the synergistic effects of different components, the S/C@Bi3TaO7-x coin cell cathode shows superior cycling and rate performance. Even under a high level of sulfur loading of 9.6 mg cm-2, a relatively high initial areal capacity of 10.20 mAh cm-2 and a specific energy density of 300 Wh kg-1 are achieved with a low electrolyte/sulfur ratio of 3.3 µL mg-1. Combined with experimental results and theoretical calculations, the mechanism by which the Bi4TaO7 with oxygen vacancies promotes the kinetics of polysulfide conversion reactions has been revealed. The design of the multiple confined cathode structure provides physical and chemical adsorption, fast charge transfer, and catalytic conversion for polysulfides.
RESUMO
In the conventional bench-top approach, the DNA recombination process is time- and effort-consuming due to laborious procedures lasting from several hours to a day. A novel DNA selection and direct extraction process has been proposed, integrated and tested on chip. The integrative microfluidic chip can perform the whole procedure of DNA recombination, including DNA digestion, gel electrophoresis, DNA extraction and insert-vector ligation within 1 h. In this high-throughput design, the manual gel cutting was replaced by an automatic processing system that performed high-quality and high-recovery efficiency in DNA extraction process. With no need of gel-dissolving reagents and manipulation, the application of selection and direct extraction process could significantly eliminate the risks from UV and EtBr and also facilitate DNA recombination. Reliable output with high success rate of cloning has been achieved with a significant reduction in operational hazards, required materials, efforts and time.
Assuntos
DNA/análise , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Recombinação Genética/genética , Eletroforese/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Microfluídica/métodosRESUMO
We propose and demonstrate a method to generate ultrawideband (UWB) signals in the optical domain based on the chaotic dynamics of an optically injected semiconductor laser with optical feedback. The chaotic-UWB pulses with a fractional bandwidth of 116% and central frequency of 6.88 GHz are experimentally generated by controlling the injection strength and frequency detuning of the chaotic laser. The spectrum of the UWB signals is in full compliance with the Federal Communications Commission spectral mask, and the experimental results are qualitatively consistent with the simulated results.
RESUMO
Lithium-sulfur (Li-S) batteries are deemed to be one of the most optimal solutions for the next generation of high-energy-density and low-cost energy storage systems. However, the low volumetric energy density and short cycle life are a bottleneck for their commercial application. To achieve high energy density for lithium-sulfur batteries, the concept of synergistic adsorptive-catalytic sites is proposed. Base on this concept, the TiN@C/S/Ta2O5 sulfur electrode with about 90 wt% sulfur content is prepared. TiN contributes its high intrinsic electron conductivity to improve the redox reaction of polysulfides, while Ta2O5 provides strong adsorption capability toward lithium polysulfides (LiPSs). Moreover, the multidimensional carbon structure facilitates the infiltration of electrolytes and the motion of ions and electrons throughout the framework. As a result, the coin Li-S cells with TiN@C/S/Ta2O5 cathode exhibit superior cycle stability with a decent capacity retention of 56.1% over 300 cycles and low capacity fading rate of 0.192% per cycle at 0.5 C. Furthermore, the pouch cells at sulfur loading of 5.3 mg cm-2 deliver a high areal capacity of 5.8 mAh cm-2 at low electrolyte/sulfur ratio (E/S, 3.3 µL mg-1), implying a high sulfur utilization even under high sulfur loading and lean electrolyte operation.
RESUMO
Li-S batteries are considered as one of the most promising battery systems because of their large theoretical capacity and high energy density. However, the "shuttle effect" of soluble polysulfides and sluggish electrochemical redox kinetics of Li-S batteries could cause a broken electrode structure and poor electrochemical performance. Herein, a high-performance and stable Li-S battery has been demonstrated by employing organo-polysulfide chain modified acetylene black (ABPS) as the coating layer on the separator. In addition to the traditional advantages of fast electron transport and polysulfide-interception ability of the carbon coating layer, the grafted organo-polysulfide chain endows the ABPS coating layer with permselectivity for lithium ion against polysulfides, electrocatalytic ability for the sluggish redox kinetics and self-repairing ability for the broken electrode. Hence, the battery prepared using an ABPS-coated separator delivers the best cycling performance (970 mA h g-1 at 0.2 C after 100 cycles) and rate performance (805 mA h g-1 at 2 C) as compared to the cells using acetylene black (AB)-coated or Celgard separators. Moreover, the Li-S battery prepared using an ABPS-coated separator exhibits a stable cycling performance at 1 C over 500 cycles with a low degradation of 0.04% per cycle, and a high coulombic efficiency (near 100%). Furthermore, as the sulfur loading was increased to 6.8 mg cm-2, the Li-S battery using the ABPS-coated separator still could deliver a high areal capacity of 6.03 mA h cm-2 with a low electrolyte/sulfur ratio (E/S = 4, µLelectrolyte mgS-1) after 170 cycles. Significantly, ABPS is an effective coating layer material for improving and stabilizing Li-S batteries.
RESUMO
The pathogenesis of glucocorticoid (GC)-induced osteonecrosis of the femoral head (GIONFH) is still disputed, and abnormal bone metabolism caused by GCs may be an important factor. In vitro, Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining were used to evaluate cellular proliferation, and western blotting was used to investigate osteogenesis. In vivo, we used micro-computed tomography (micro-CT), H&E staining, Masson staining, and immunohistochemistry (IHC) analysis to evaluate the impact of exosomes. In addition, the mechanism by which exosomes regulate osteogenesis through the miR-365a-5p/Hippo signaling pathway was investigated using RNA sequencing (RNA-seq), luciferase reporter assays, fluorescence in situ hybridization (FISH), and western blotting. The results of western blotting verified that the relevant genes in osteogenesis, including BMP2, Sp7, and Runx2, were upregulated. RNA-seq and qPCR of the exosome and Dex-treated exosome groups showed that miR-365a-5p was upregulated in the exosome group. Furthermore, we verified that miR-365a-5p promoted osteogenesis by targeting SAV1. Additional in vivo experiments revealed that exosomes prevented GIONFH in a rat model, as shown by micro-CT scanning and histological and IHC analysis. We concluded that exosomal miR-365a-5p was effective in promoting osteogenesis and preventing the development of GIONFH via activation of the Hippo signaling pathway in rats.
RESUMO
We propose and demonstrate an approach to the generation of an ultrawideband (UWB) pulse utilizing the nonlinear dynamics of a semiconductor laser (SL). The output UWB chaotic optical pulses generated by the SL with optical feedback can be controlled when the feedback strength and driving current of the SL are tuned. Our experiment proves that the spectrum characteristics of the UWB pulses satisfy Federal Communications Commission regulations, and the experimental results are consistent with the simulated results based on the laser's rate equations.
RESUMO
Wavelength division multiplexing (WDM) transmission of chaotic optical communication (COC) and conventional fiber-optic communication (CFOC) is numerically confirmed and analyzed. For an 80-km-long two-channel communication system, a 1-Gb/s secure message in COC channel and 10-Gb/s digital signal in CFOC channel are simultaneously achieved with 100 GHz channel spacing. Our numerical simulations demonstrate that the COC and CFOC can realize no-crosstalk transmission of 80 km when the peak power of CFOC channel is less than 8dBm. We also find that the crosstalk between COC and CFOC does not depend on channel spacing when the channel spacing exceeds 100GHz. Moreover, the crosstalk does not limit channel number by comparing the synchronization performance of COC in four- and six-channel WDM systems.
Assuntos
Segurança Computacional , Armazenamento e Recuperação da Informação/métodos , Fibras Ópticas , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Microsurgery is widely utilized for patients with cerebral hemorrhage (CH). The purpose of this study is to assess the efficacy and safety of microsurgery for the treatment of patients with CH secondary to gestational hypertension (GH). METHODS: Relevant randomized controlled trials in eight electronic databases of Cochrane Library, PUBMED, EMBASE, Web of Science, VIP, WANFANG, Chinese Biomedical Literature Database, and China National Knowledge Infrastructure will be included. All electronic databases will be searched from inceptions to the present without language restriction. RevMan 5.3 software will be applied for statistical analysis. RESULTS: This study will summarize a high-quality synthesis of maternal mortality, severe maternal complications, maternal quality of life, limbs function, muscle strength, and muscle tone to evaluate the efficacy and safety of microsurgery for patients with CH secondary to GH. CONCLUSIONS: This study will provide evidence that microsurgery is an effective intervention in patients with CH secondary to GH. PROSPERO REGISTRATION NUMBER: PROSPERO CRD42019145750.
Assuntos
Hemorragia Cerebral/cirurgia , Hipertensão Induzida pela Gravidez/cirurgia , Microcirurgia/métodos , Procedimentos Neurocirúrgicos/métodos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Hemorragia Cerebral/etiologia , Feminino , Humanos , Gravidez , Resultado do TratamentoRESUMO
Lots of bananas were wasted before commercialization. It is necessary to search potential industrial applications of banana. In the present study, starches from seven banana cultivars (labeled as A-G) were isolated and then characterized. These starches presented different and irregular shapes, such as sphere, long spheroid and polygonal granules. The distribution of size and analyses of average molecular weight showed more small granules in samples B, D, F and G than other samples. The amylose content varied from 22.59% to 38.40%. The crystal types of these starches were a mixture of B-type and C-type, and the relative crystallinity varied greatly. The differential scanning calorimetry (DSC) results showed that the onset temperature of gelatinization increased as follows: Aâ¯<â¯Bâ¯<â¯Eâ¯<â¯Câ¯≈â¯Dâ¯<â¯F. The maximum viscosity of banana starch decreased as follows: Gâ¯>â¯Câ¯>â¯Dâ¯>â¯Fâ¯>â¯Eâ¯=â¯Bâ¯>â¯A. The in vitro digestibility test showed that the content of resistant starch was very high in banana starches. These results would be useful to the application of those starches in food and nonfood industries.
Assuntos
Fenômenos Químicos , Digestão , Musa/química , Amido/química , Amido/metabolismo , Pomadas , TemperaturaRESUMO
Avocado (Persea americana) is a tropical fruit that has drawn great interest its oil for foods and cosmetic industries; however, avocado oil processing by-product is a potential source of edible protein. Herein, edible protein was prepared from defatted avocado meal, and it's physicochemical, functional and emulsion properties were investigated. The avocado protein showed U-shaped exhibiting strong effect of pH, and a minimum solubility being observed at pH 4.5, confirming the isoelectric point of avocado protein. Nutritionally, the avocado protein contains all the essential amino acids. Avocado protein provided higher water and oil absorption capacities, higher radical scavenging capacity but lower in-vitro digestibility compared with soy protein. Furthermore, the avocado protein as emulsifier afforded a stability oil-in-water emulsion system, resulting in a greater emulsifying stability than that of soy protein. The present results highlight the potential source of edible protein from avocado oil processing by-products for functional food ingredients.
Assuntos
Emulsões , Persea/química , Óleos de Plantas/química , Proteínas de Plantas/química , Digestão , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Plantas/metabolismo , Solubilidade , Propriedades de SuperfícieRESUMO
BACKGROUND: Long non-coding RNAs (lncRNAs) can be used as prognostic biomarkers in many types of cancer. OBJECTIVE: We sought to establish an lncRNA signature to improve postoperative risk stratification for patients with localized clear cell renal cell carcinoma (ccRCC). DESIGN, SETTING, AND PARTICIPANTS: Based on the RNA-seq data of 444 stage I-III ccRCC tumours from The Cancer Genome Atlas project, we built a four-lncRNA-based classifier using the least absolute shrinkage and selection operation (LASSO) Cox regression model in 222 randomly selected samples (training set) and validated the classifier in the remaining 222 samples (internal validation set). We confirmed this classifier in an external validation set of 88 patients with stage I-III ccRCC from a Japan cohort and using quantitative reverse transcription polymerase chain reaction (RT-PCR) in another three independent sets that included 1869 patients from China with stage I-III ccRCC. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Univariable and multivariable Cox regression, Harrell's concordance index (c-index), and time-dependent receiver operating characteristic curves were used to evaluate the association of the classifier with overall survival, disease-specific survival, and disease-free survival. RESULTS AND LIMITATIONS: Using the LASSO Cox regression model, we built a classifier named RCClnc4 based on four lncRNAs: ENSG00000255774, ENSG00000248323, ENSG00000260911, and ENSG00000231666. In the RNA-seq and RT-PCR data sets, the RCClnc4 signature significantly stratified patients into high-risk versus low-risk groups in terms of clinical outcome across and within subpopulations and remained as an independent prognostic factor in multivariate analyses (hazard ratio range, 1.34 [95% confidence interval {CI}: 1.03-1.75; p=0.028] to 1.89 [95% CI, 1.55-2.31; p<0.001]) after adjusting for clinical and pathologic factors. The RCClnc4 signature achieved a higher accuracy (mean c-index, 0.72) than clinical staging systems such as TNM (mean c-index, 0.62) and the stage, size, grade, and necrosis (SSIGN) score (mean c-index, 0.64), currently reported prognostic signatures and biomarkers for the estimation of survival. When integrated with clinical characteristics, the composite clinical and lncRNA signature showed improved prognostic accuracy in all data sets (TNM + RCClnc4 mean c-index, 0.75; SSIGN + RCClnc4 score mean c-index, 0.75). The RCClnc4 classifier was able to identify a clinically significant number of both high-risk stage I and low-risk stage II-III patients. CONCLUSIONS: The RCClnc4 classifier is a promising and potential prognostic tool in predicting the survival of patients with stage I-III ccRCC. Combining the lncRNA classifier with clinical and pathological parameters allows for accurate risk assessment in guiding clinical management. PATIENT SUMMARY: The RCClnc4 classifier could facilitate patient management and treatment decisions.