Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Apoptosis ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615082

RESUMO

Our previous study showed that pyridoxine 5'-phosphate oxidase (PNPO) is a tissue biomarker of ovarian cancer (OC) and has a prognostic implication but detailed mechanisms remain unclear. The current study focused on PNPO-regulated lysosome/autophagy-mediated cellular processes and the potential role of PNPO in chemoresistance. We found that PNPO was overexpressed in OC cells and was a prognostic factor in OC patients. PNPO significantly promoted cell proliferation via the regulation of cyclin B1 and phosphorylated CDK1 and shortened the G2M phase in a cell cycle. Overexpressed PNPO enhanced the biogenesis and perinuclear distribution of lysosomes, promoting the degradation of autophagosomes and boosting the autophagic flux. Further, an autolysosome marker LAMP2 was upregulated in OC cells. Silencing LAMP2 suppressed cell growth and induced cell apoptosis. LAMP2-siRNA blocked PNPO action in OC cells, indicating that the function of PNPO on cellular processes was mediated by LAMP2. These data suggest the existence of the PNPO-LAMP2 axis. Moreover, silencing PNPO suppressed xenographic tumor formation. Chloroquine counteracted the promotion effect of PNPO on autophagic flux and inhibited OC cell survival, facilitating the inhibitory effect of PNPO-shRNA on tumor growth in vivo. Finally, PNPO was overexpressed in paclitaxel-resistant OC cells. PNPO-siRNA enhanced paclitaxel sensitivity in vitro and in vivo. In conclusion, PNPO has a regulatory effect on lysosomal biogenesis that in turn promotes autophagic flux, leading to OC cell proliferation, and tumor formation, and is a paclitaxel-resistant factor. These data imply a potential application by targeting PNPO to suppress tumor growth and reverse PTX resistance in OC.

2.
BMC Cancer ; 23(1): 989, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848823

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are considered key players in the formation and development of tumors. Herein, Gene Expression Profiling Interactive Analysis (GEPIA) was employed as a bioinformatics technology. LINC02587 is differentially expressed in bladder urothelial cancer, glioblastoma, lung adenocarcinoma, lung SCC, melanoma, and other tumor tissue and cells. However, its impact on the emergence of glioma and its mechanism is remaining elusive. METHODS: Some of the in vitro assays employed in this study were the CCK-8 / Annexin-V / Transwell assays, colony formation, and wound healing, together with Western blot (WB) evaluation. MSP / BSP assays were employed for assessing the CpG island's methylation status in the LINC02587 promoter. Through transcriptome, ferroptosis-related experiments, and WB evaluation, it was confirmed that LINC02587 is correlated with the regulation of ferroptosis in tumor cells, and CoQ-Fsp1 is one of its regulatory pathways. Moreover, the underlined in-vitro results were further validated by in-vivo studies. RESULTS: The current study shows that the promoter sequence of LINC02587 is regulated by methylation. The silencing of LINC02587 can inhibit cellular proliferative, migrative, and invasive properties, and induce ferroptosis within gliomas through the CoQ-FSP1 pathway. CONCLUSIONS: LINC02587 is likely to be a novel drug target in treating glioma.


Assuntos
Ferroptose , Glioblastoma , Glioma , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Metilação de DNA , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Nanomedicine ; 51: 102688, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121460

RESUMO

Chemoresistance is the main cause of chemotherapy failure in ovarian cancer (OC). The enhanced scavenging of reactive oxygen species (ROS) by the thioredoxin system resulted in insufficient intracellular concentrations of effective ROS, leading to chemoresistance. To induce OC cell apoptosis by enhancing intracellular ROS levels, protoporphyrin IX (PpIX) and albumin-bound PTX nanoparticles (APNP) were utilized to fabricate APNP-PpIX nanoparticles. APNP-PpIX effectively generated ROS and increased the effective ROS concentration in chemoresistant cancer cells. The in vitro and in vivo experiments confirmed the effective inhibition of APNP-PpIX on chemoresistant OC cell proliferation and tumor formation. APNP-PpIX significantly improved the effectiveness of chemotherapy and photodynamic therapy, thus providing a new approach for the clinical treatment of chemoresistant OC.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio , Resistencia a Medicamentos Antineoplásicos , Fotoquimioterapia/métodos , Linhagem Celular Tumoral
4.
J Nanobiotechnology ; 20(1): 319, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799174

RESUMO

Chemoresistance is often a cause of the failure of chemotherapy in cancer treatment. Sorcin (SRI) is a soluble resistance-related calcium-binding protein involved in chemoresistant processes and is overexpressed in many chemoresistant cancer cells, including paclitaxel (PTX)-resistant ovarian cancer. Increased SRI can reduce the concentration of calcium ions in the cytosol and mitochondria and the decrease of calcium ion concentration prevents the occurrence of apoptosis. Here we examined the SRI expression in multiple cancers using a human TissueArray and found that SRI expression was significantly higher in malignant tumor tissues. Furthermore, SRI was overexpressed, while intracellular calcium concentration was decreased, in chemoresistant cancer cells. To restore intracellular calcium homeostasis and overcome chemoresistance, we developed lipid-coated albumin-PTX nanoparticles loaded with SRI-siRNA (LANP-PTX-siSRI) for PTX and SRI-siRNA co-delivery. LANP-PTX-siSRI had dual-target roles in the regulation of SRI and the delivery of PTX into chemoresistant cells. The LANP-PTX-siSRI inhibited the expression of SRI and enhanced intracellular calcium, leading to the induction of apoptosis and the inhibition of the growth of PTX-resistant cancer cells in vitro and in vivo. In addition, the mechanism study revealed that the overexpression of SRI was associated with an impaired TGF-ß signaling pathway. The administration of TGF-ß1 inhibited two calcium-binding proteins SRI and S100A14. In conclusion, our data unveil that restoring intracellular calcium ion homeostasis via reducing SRI expression can reverse chemoresistance. Thus, the fabricated LANP-PTX-siSRI has a potentially therapeutical application.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Albuminas , Apoptose , Cálcio , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Homeostase , Humanos , Lipídeos , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA Interferente Pequeno/uso terapêutico
5.
J Cell Physiol ; 236(10): 6907-6919, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33655494

RESUMO

Ovarian cancer (OC) remains the leading cause of cancer-related death among gynecological cancers. The present study examined the role of collagen type V alpha 1 (COL5A1) and the characteristics of COL5A1 as an oncogenic protein in OC. The association of COL5A1 with paclitaxel (PTX)-resistance and stemness in OC was also studied and the multidatabase and big data analyses of the prognostic value, coexpression network, genetic alterations, and tumor-infiltrating immune cells of COL5A1 were elucidated. We found that COL5A1 expression was high in OC cells and tissues. Knockdown of COL5A1 inhibited the proliferation and migration of OC cells. Further study also showed that COL5A1 was overexpressed in PTX-resistant OC cells compared to respective PTX-sensitive cells. Additionally, COL5A1 was more enriched in OC stem cell-like cells. Silencing COL5A1 expression decreased the OC cell resistance to PTX and inhibited the ability of OC-spheroid formation. Survival analysis predicted that the elevated COL5A1 expression was associated with a worse survival outcome and correlated to the tumor stage of OC patients. The estimating relative subsets of RNA transcripts (CIBERSORT) algorithm analysis also unveiled the correlation of several tumor-infiltrating immune cells with the expression of COL5A1. Taken together, our data demonstrate that COL5A1 is a biomarker to predict OC progression and PTX-resistance and represents a promising target for OC treatment.


Assuntos
Antineoplásicos/farmacologia , Colágeno Tipo V/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo V/genética , Bases de Dados Genéticas , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Invasividade Neoplásica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Microambiente Tumoral , Regulação para Cima
7.
Curr Med Chem ; 31(26): 4213-4231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357948

RESUMO

BACKGROUND: Ovarian cancer (OC) is the deadliest malignant tumor in women with a poor prognosis due to drug resistance and lack of prediction tools for therapeutic responses to anti- cancer drugs. OBJECTIVE: The objective of this study was to launch a prediction model for therapeutic responses in OC patients. METHODS: The RNA-seq technique was used to identify differentially expressed paclitaxel (PTX)- resistant lncRNAs (DE-lncRNAs). The Cancer Genome Atlas (TCGA)-OV and ImmPort database were used to obtain immune-related lncRNAs (ir-lncRNAs). Univariate, multivariate, and LASSO Cox regression analyses were performed to construct the prediction model. Kaplan- meier plotter, Principal Component Analysis (PCA), nomogram, immune function analysis, and therapeutic response were applied with Genomics of Drug Sensitivity in Cancer (GDSC), CIBERSORT, and TCGA databases. The biological functions were evaluated in the CCLE database and OC cells. RESULTS: The RNA-seq defined 186 DE-lncRNAs between PTX-resistant A2780-PTX and PTXsensitive A2780 cells. Through the analysis of the TCGA-OV database, 225 ir-lncRNAs were identified. Analyzing 186 DE-lncRNAs and 225 ir-lncRNAs using univariate, multivariate, and LASSO Cox regression analyses, 9 PTX-resistant immune-related lncRNAs (DEir-lncRNAs) acted as biomarkers were discovered as potential biomarkers in the prediction model. Single-cell RNA sequencing (scRNA-seq) data of OC confirmed the relevance of DEir-lncRNAs in immune responsiveness. Patients with a low prediction score had a promising prognosis, whereas patients with a high prediction score were more prone to evade immunotherapy and chemotherapy and had poor prognosis. CONCLUSION: The novel prediction model with 9 DEir-lncRNAs is a valuable tool for predicting immunotherapeutic and chemotherapeutic responses and prognosis of patients with OC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Paclitaxel , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico
8.
PLoS One ; 19(8): e0308731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39208260

RESUMO

BACKGROUND: Picroside II (P-II) is the main bioactive constituent of Picrorhiza Kurroa, a traditional Chinese herb of interest for its proven anti-inflammatory properties. Its beneficial effects have been noted across several physiological systems, including the nervous, circulatory, and digestive, capable of treating a wide range of diseases. Nevertheless, the potential of Picroside II to treat osteoarthritis (OA) and the mechanisms behind its efficacy remain largely unexplored. AIM: This study aims to evaluate the efficacy of Picroside II in the treatment of osteoarthritis and its potential molecular mechanisms. METHODS: In vitro, we induced cellular inflammation in chondrocytes with lipopolysaccharide (LPS) and subsequently treated with Picroside II to assess protective effect on chondrocyte. We employed the Cell Counting Kit-8 (CCK-8) assay to assess the impact of Picroside II on cell viability and select the optimal Picroside II concentration for subsequent experiments. We explored the effect of Picroside II on chondrocyte pyroptosis and its underlying molecular mechanisms by qRT-PCR, Western blot (WB) and immunofluorescence. In vivo, we established the destabilization of the medial meniscus surgery to create an OA mouse model. The therapeutic effects of Picroside II were then assessed through Micro-CT scanning, Hematoxylin-eosin (H&E) staining, Safranin O-Fast Green (S&F) staining, immunohistochemistry and immunofluorescence. RESULTS: In in vitro studies, toluidine blue and CCK-8 results showed that a certain concentration of Picroside II had a restorative effect on the viability of chondrocytes inhibited by LPS. Picroside II notably suppressed the expression levels of caspase-1, IL-18, and IL-1ß, which consequently led to the reduction of pyroptosis. Moreover, Picroside II was shown to decrease NLRP3 inflammasome activation, via the MAPK/NF-κB signaling pathway. In vivo studies have shown that Picroside II can effectively reduce subchondral bone destruction and osteophyte formation in the knee joint of mice after DMM surgery. CONCLUSIONS: Our research suggests that Picroside II can inhibit chondrocyte pyroptosis and ameliorate osteoarthritis progression by modulating the MAPK/NF-κB signaling pathway.


Assuntos
Condrócitos , Cinamatos , Glucosídeos Iridoides , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Osteoartrite , Piroptose , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Glucosídeos Iridoides/farmacologia , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Cinamatos/farmacologia , Cinamatos/uso terapêutico , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL
9.
Int Immunopharmacol ; 142(Pt A): 112893, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217878

RESUMO

BACKGROUND: Osteoporosis(OP) is a bone disease under research. Iron overload is a significant risk factor. Iron balance is crucial for bone metabolism and biochemical processes. When there is an excess of iron in the body, it tends to produce reactive oxygen species (ROS) which can cause oxidative damage to cells. The flavonoid compound, Cardamonin (CAR), possesses potent anti-inflammatory and anti-iron overload properties that can be beneficial in mitigating the risk of OP. PURPOSE: This study investigates the potential therapeutic interventions and underlying mechanisms of CAR for treating OP in individuals with iron overload. METHODS: The model of iron-overloaded mice was established by intraperitoneally injecting iron dextran(ID) into the mice. OP severity was evaluated with micro-CT and Hematoxylin-Eosin (HE) staining in vivo. In vitro, the iron-overloaded osteoblast model was induced by ferric ammonium citrate. Cell counting kit 8 assay to evaluate cell viability, Annexin V-FITC/PI assay to detect cell apoptosis. A range of cellular markers were detected, including the variation in mitochondrial membrane potential (MMP), levels of malondialdehyde (MDA), ROS, and lipid hydroperoxide (LPO). RESULTS: CAR can reverse bone loss in iron overload-induced OP mouse models in vivo. CAR attenuates the impairment of iron overload on the activity and apoptosis of MC3T3-E1 cells as well as the accumulation of ROS and LPO activation via HIF-1α/ROS pathways. CONCLUSION: CAR downregulating HIF-1α pathways prevents inhibition of iron overload-induced osteoblasts dysfunctional by attenuating ROS accumulation, reducing oxidative stress, promotes bone formation, and alleviates OP.

10.
Int J Oncol ; 63(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37594126

RESUMO

Ovarian cancer (OC) lacks effective biomarkers for diagnosis at an early stage and often develops chemoresistance after the initial treatment at an advanced stage. RNA­binding motif protein 15 (RBM15) is an RNA m6A methylation mediator that serves an oncogenic role in some cancers. However, the function and molecular mechanisms of RBM15 in ovarian tumorigenesis and chemoresistance remain to be elucidated. The present study identified the overexpression of RBM15 in OC tissues and paclitaxel (PTX)­resistant cells using reverse transcription­quantitative (q)PCR, western blotting and immunohistochemistry. Clinical data analyses showed that high expression of RBM15 was associated with poor prognosis in patients with OC. Overexpression of RBM15 led to an increase in cell viability and colony formation and a decrease in cell sensitivity to PTX and apoptosis, whereas the knockdown of RBM15 resulted in the inhibition of cell viability and colony formation in vitro and tumor formation in vivo and increased cell apoptosis and sensitivity to PTX in a time­ and dose­dependent manner. Furthermore, RBM15 knockdown reduced the spheroid formation of PTX­resistant OC cells. Silencing of RBM15 decreased multidrug resistance 1 (MDR1) mRNA m6A methylation detected by the methylated RNA immunoprecipitation­qPCR assay and downregulated the expression of a chemo­drug efflux pump MDR1 at the mRNA and protein levels. Finally, RBM15 expression was suppressed by the activation of the TGF­ß signaling pathway. Thus, the findings revealed a TGF­ß/RBM15/MDR1 regulatory mechanism. Targeting RBM15 may provide a novel therapeutic strategy for the treatment of PTX­resistant OC.


Assuntos
Neoplasias Ovarianas , Paclitaxel , Humanos , Feminino , Metilação , Paclitaxel/farmacologia , RNA Mensageiro , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , RNA , Transdução de Sinais , Proteínas de Ligação a RNA/genética
11.
Exp Biol Med (Maywood) ; 248(23): 2198-2209, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38084732

RESUMO

Ovarian cancer (OC) is a fatal gynecologic disease. The most common treatment for OC patients is surgery combined with chemotherapy but most patients at advanced stages eventually develop relapse due to chemoresistance. This study examined the role and function of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) in OC. We observed that the expression of IGF2BP2 mRNA and protein was up-regulated in OC cells and tissues using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. An increase in IGF2BP2 expression at mRNA and protein levels was verified by the analyses of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), respectively. Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) databases were applied to analyze the expression and clinical value of IGF2BP2. Gene set enrichment analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) analyses explored biological functions and the involvement of IGF2BP2 in cell growth. Indeed, the knockdown of IGF2BP2 resulted in the inhibition of OC cell proliferation evaluated by the Cell Counting Kit-8 assay. Genomic amplification of IGF2BP2 partly accounted for its overexpression. High expression of IGF2BP2 was associated with signal transducer and activator of transcription 1 (STAT1) and drug sensitivity and was correlated with an unfavorable survival outcome in OC patients. Furthermore, the responsiveness of chemotherapy and immunotherapy were analyzed using the "pRRophetic" R package and The Cancer Immune Atlas (TCIA) database, respectively. The low expression of IGF2BP2 was associated with chemoresistance but with high tumor microenvironment scores and tumor-infiltrating immune cells, suggesting that immunotherapy may apply in chemoresistant patients. The alteration of IGF2BP2 expression may respond to chemotherapy and immunotherapy. Thus, IGF2BP2 shows potential as a therapeutic target and diagnostic biomarker for OC.


Assuntos
Peptídeos Semelhantes à Insulina , Neoplasias Ovarianas , Humanos , Feminino , Proteômica , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Imunoterapia , Bioensaio , Microambiente Tumoral , Proteínas de Ligação a RNA/genética
12.
Cell Stress Chaperones ; 28(6): 969-987, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37995025

RESUMO

Necroptosis is a new type of programmed cell death discovered in recent years, playing an important role in various diseases. Since it was conceptualized in 2005, research on necroptosis has developed rapidly. However, few bibliometric analyses have provided a comprehensive overview of the field. This study aimed to employ a bibliometric analysis to assess necroptosis research's current status and hotspot, highlight landmark findings, and orientate future research. A total of 3993 publications from the WoSCC were collected for this study. Multiple tools were used for bibliometric analysis and data visualization, including an online website, VOSviewer, CiteSpace, and HistCite. Publications related to necroptosis have increased significantly annually, especially in the last 5 years. Globally, the USA and Harvard University are the most outstanding countries and institutions in this field, respectively. The academic groups managed by Peter Vandenabeele and Junying Yuan both have permanent and intensive research on necroptosis. Cell Death and Differentiation is the most vital journal in this field. The molecular mechanisms of necroptosis and its role in disease are the focus of current research, while the crosstalk between programmed cell death is an emerging direction in the field. The "reactive oxygen species", "innate immunity", and "programmed cell death" may be potential research hotspots. Our results present a comprehensive knowledge map and explore research trends. Researchers and funding agencies on necroptosis can obtain helpful references from our study.


Assuntos
Apoptose , Necroptose , Humanos , Morte Celular , Bibliometria , Diferenciação Celular
13.
J Cancer ; 14(13): 2538-2551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670966

RESUMO

Cyclin dependent kinase 14 (CDK14) plays a central role in the control of cell proliferation and cell cycle progression. However, the specific function and regulatory mechanism of CDK14 on paclitaxel (PTX) resistance in ovarian cancer (OC) remain unclear. The present study demonstrated that CDK14 was overexpressed in OC tissues and cells at mRNA and protein levels detected by qRT-PCR, Western blot, and immunohistochemistry. Survival analysis showed that elevated CDK14 was related to the poor prognosis of OC patients. Overexpression of CDK14 was correlated with chemoresistance in OC. The expression level of CDK14 was higher in PTX-resistant OC cells (SK3R-PTX and OV3R-PTX) than in their counterpart-sensitive cells (SK-OV-3 and OVCAR-3). Knockdown of CDK14 decreased multidrug resistance 1 (MDR1) and ß-catenin expression in SK3R-PTX and OV3R-PTX cells and resensitized OC cells to PTX by decreasing cell proliferation and inducing cell apoptosis. Administration of transforming growth factor (TGF)-ß1 decreased CDK14 protein in PTX-resistant OC cells. The inhibitory effect of TGF-ß1 on CDK14 expression was abolished in the presence of a TGF-ß type I receptor kinase inhibitor (SB-431542). Furthermore, TGF-ß signal transducer Smad2 protein directly bound to the region -437 to -446 upstream of the CDK14 transcription start site (TSS), resulting in downregulating the expression of CDK14. These data indicate that CDK14 is a PTX-resistant marker and is regulated by the TGF-ß signaling pathway. Targeting CDK14 to enhance the sensitivity of PTX may provide a new therapeutic strategy for reversing the PTX resistance in OC.

14.
Mol Oncol ; 17(7): 1246-1262, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36734611

RESUMO

Transcription factors (TFs) are key players in the regulation of gene transcription in mammalian cells. Although high-throughput screening can be used to identify differentially expressed genes between comparable groups, the precision of the corresponding datasets is far from optimal. Here, we establish Target Finder of Transcription Factor (TFoTF), a method for the prediction of TF-targeted genes from genomic and cancer-related transcriptomic data. TFoTF can identify potential TF-targeted genes in large cancer datasets and efficiently estimate correlations between TFs and their targeted genes with a significant level of specificity, sensitivity, and precision. Overall, TFoTF is an easy-to-use tool that can be utilized to generate testable hypotheses in the context of cancer research projects.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Transcriptoma , Mamíferos/genética , Mamíferos/metabolismo , Neoplasias/genética
15.
Clin Transl Med ; 13(11): e1483, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37965796

RESUMO

BACKGROUND: Oncogenic PIK3CA mutations (PIK3CAmut ) frequently occur in a higher proportion in luminal breast cancer (LBC), especially in refractory advanced cases, and are associated with changes in tumour cellular metabolism. Nevertheless, its effect on the progression of the immune microenvironment (TIME) within tumours and vital molecular events remains veiled. METHODS: Multiplex immunohistochemistry (mIHC) and single-cell mass cytometry (CyTOF) was used to describe the landscape of TIME in PIK3CAmut LBC. The PIK3CA mutant cell lines were established using CRISPER/Cas9 system. The gene expression levels, protein secretion and activity of signaling pathways were measured by real-time RT-PCR, ELISA, immunofluorescence staining or western blotting. GSEA analysis, transwell chemotaxis assay, live cell imaging, flow cytometry metabolite analysis targeting arachidonic acid, Dual-luciferase reporter assay, and Chromatin immunoprecipitation assay were used to investigate the underlying function and mechanism of the PI3K/5-LOX/LTB4 axis. RESULTS: PIK3CAmut LBC cells can induce an immunosuppressive TIME by recruiting myeloid-derived suppressor cells (MDSCs) and excluding cytotoxic T cells via the arachidonic acid (AA) metabolism pathway. Mechanistically, PIK3CAmut activates the transcription of 5-lipoxygenase (5-LOX) in a STAT3-dependent manner, which in turn directly results in high LTB4 production, binding to BLT2 on MDSCs and promoting their infiltration. Since a suppressive TIME is a critical barrier for the success of cancer immunotherapy, the strategies that can convert "cold" tumours into "hot" tumours were compared. Targeted therapy against the PI3K/5-LOX/LTB4 axis synergizing with immune checkpoint blockade (ICB) therapy achieved dramatic shrinkage in vivo. CONCLUSIONS: The results emphasize that PIK3CAmut can induce immune evasion by recruiting MDSCs through the 5-LOX-dependent AA pathway, and combination targeted therapy with ICB may provide a promising treatment option for refractory advanced LBC patients.


Assuntos
Neoplasias da Mama , Células Supressoras Mieloides , Feminino , Humanos , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Neoplasias da Mama/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Imunossupressores , Leucotrieno B4/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral
16.
Cancer Lett ; 554: 216033, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493901

RESUMO

Temozolomide (TMZ) has been determined to be the chemotherapeutic drug with efficacy for glioblastoma (GBM). Thus, potentiating the therapeutic effect of TMZ can undoubtedly yield twice the result with half the effort. In this study, we found for the first time that TMZ can produce reactive oxygen species (ROS) under the influence of ultrasound (US). This property allows TMZ-US therapy to have better efficacy in the treatment of GBM. Given that the increasing use of US in central nervous system (CNS) diseases and the importance of TMZ for GBM therapy, our results will facilitate the development of TMZ-associated glioblastoma therapies. Moreover, we found that chemotherapeutic drugs might have the ability to generate ROS under the excitation of US. On a larger scale, our findings may be applicable to a wide range of known drugs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Espécies Reativas de Oxigênio , Necroptose , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
17.
Biomed Pharmacother ; 168: 115751, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879214

RESUMO

Knee Osteoarthritis (KOA) is an age-related progressive degenerative joint disease, which is featured with pain, joint deformity, and disability. Accumulating evidence indicated oxidative stress plays a crucial role in the occurrence and development of KOA. Curcumin is a polyphenolic compound with significant antioxidant activity among various diseases while catalase (CAT) is an enzyme degrading hydrogen peroxide in treating oxidative diseases. We previously showed that the expression of CAT was low in cartilage. However, the combination of curcumin and CAT in KOA is still elusive. In this study, we demonstrated that the combination of curcumin and CAT has the potential to inhibit the IL1ß-induced chondrocyte apoptosis without cytotoxicity in vitro. Mechanistically, we found that the synergistic application curcumin and CAT not only promotes curcumin's regulation of the NRF2/HO-1 signaling pathway to enhance antioxidant enzyme expression to remove superoxide radicals, but also CAT can further remove downstream hydrogen peroxide which enhances the ability to scavenge reactive oxygen species (ROS). In vivo, studies revealed that combination of curcumin and catalase could better inhibit oxidative stress-induced chondrocyte injury by promoting the expression of ROS scavenging enzymes. In sum, the combination of curcumin and catalase can be used to treat KOA. Thus, combination of curcumin and catalase may act as a novel therapeutic agent to manage KOA and our research gives a rationale for their combined use in the therapeutic of KOA.


Assuntos
Curcumina , Osteoartrite do Joelho , Humanos , Espécies Reativas de Oxigênio/metabolismo , Curcumina/uso terapêutico , Catalase/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Peróxido de Hidrogênio/farmacologia , Condrócitos/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
18.
Int J Mol Med ; 52(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800616

RESUMO

Iron overload is a prevalent pathological factor observed among elderly individuals and those with specific hematological disorders, and is frequently associated with an elevated incidence of osteoporosis. Although arctiin (ARC) has been shown to possess antioxidant properties and the ability to mitigate bone degeneration, its mechanism of action in the treatment of iron overload­induced osteoporosis (IOOP) remains incompletely understood. To explore the potential molecular mechanisms underlying the effects of ARC, the MC3T3­E1 cell osteoblast cell line was used. Cell Counting Kit was used to assess MC3T3­E1 cell viability. Alkaline phosphatase staining and alizarin red staining were assessed for osteogenic differentiation. Calcein AM assay was used to assess intracellular iron concentration. In addition, intracellular levels of reactive oxygen species (ROS), lipid peroxides, mitochondrial ROS, apoptosis rate and mitochondrial membrane potential changes in MC3T3­E1 cells were examined using flow cytometry and corresponding fluorescent dyes. The relationship between ARC and the PI3K/Akt pathway was then explored by western blotting and immunofluorescence. In addition, the effects of ARC on IOOP was verified using an iron overload mouse model. Immunohistochemistry was performed to evaluate expression of osteogenesis­related proteins. Micro-CT and H&E were used to analyze bone microstructural parameters and histomorphometric indices in the bone tissue. Notably, ARC treatment reversed the decreased viability and increased apoptosis in MC3T3­E1 cells originally induced by ferric ammonium citrate, whilst promoting the formation of mineralized bone nodules in MC3T3­E1 cells. Furthermore, iron overload induced a decrease in the mitochondrial membrane potential, augmented lipid peroxidation and increased the accumulation of ROS in MC3T3­E1 cells. ARC not only positively regulated the anti­apoptotic and osteogenic capabilities of these cells via modulation of the PI3K/Akt pathway, but also exhibited antioxidant properties by reducing oxidative stress. In vivo experiments confirmed that ARC improved bone microarchitecture and biochemical parameters in a mouse model of iron overload. In conclusion, ARC exhibits potential as a therapeutic agent for IOOP by modulating the PI3K/Akt pathway, and via its anti­apoptotic, antioxidant and osteogenic properties.


Assuntos
Sobrecarga de Ferro , Osteoporose , Humanos , Camundongos , Animais , Idoso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Osteogênese , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoblastos/metabolismo
19.
Life Sci ; 312: 121092, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279968

RESUMO

BACKGROUND: Metformin (MET) is widely used as a first-line hypoglycemic agent for the treatment of type 2 diabetes mellitus (T2DM) and was also confirmed to have a therapeutic effect on type 2 diabetic osteoporosis (T2DOP). However, the potential mechanisms of MET in the treatment of T2DOP are unclear. OBJECTIVE: To clarify the effect of MET in T2DOP and to explore the potential mechanism of MET in the treatment of T2DOP. METHODS: In vitro, we used MC3T3-E1 cells to study the effects of MET on osteogenic differentiation and anti-oxidative stress injury in a high glucose (Glucose 25 mM) environment. In vivo, we directly used db/db mice as a T2DOP model and assessed the osteoprotective effects of MET by Micro CT and histological analysis. RESULTS: In vitro, we found that MET increased ALP activity in MC3T3-E1 cells in a high-glucose environment, promoted the formation of bone mineralized nodules, and upregulated the expression of the osteogenesis-related transcription factors RUNX2, Osterix, and COL1A1-related genes. In addition, MET was able to reduce high glucose-induced reactive oxygen species (ROS) production. In studies on the underlying mechanisms, we found that MET activated the Nrf2/HO-1 signaling pathway and alleviated high-glucose-induced oxidative stress injury. In vivo results showed that MET reduced bone loss and bone microarchitecture destruction in db/db mice. CONCLUSION: Our results suggest that MET can activate the Nrf2/HO-1 signaling pathway to regulate the inhibition of osteogenic differentiation induced by high glucose thereby protecting T2DOP.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Osteoporose , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos , Osteogênese , Osteoporose/metabolismo , Estresse Oxidativo , Transdução de Sinais
20.
Sci Rep ; 13(1): 13744, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612419

RESUMO

Iron homeostasis plays an essential role in joint health, while iron overload can cause damage and death of cartilage cells. Cardamonin (CAR) is a substance found in the fruit of the chasteberry plant and has anti-inflammatory and anti-tumor activities. We first administered iron dextran (500 mg/kg) intraperitoneally to establish an iron overload mouse model and surgically induced osteoarthritis. The extent of OA and iron deposition were assessed using Micro-ct, Safranin-O/fast green staining, H&E staining, and Prussian Blue 10 weeks later. We administered primary chondrocytes with Ferric Ammonium Citrate (FAC) to evaluate the chondrocyte changes. Chondrocytes were identified in vitro by toluidine blue staining, and chondrocyte viability was evaluated by CCK-8. The rate of apoptosis was determined by Annexin V-FITC/PI assay. The mechanism of action of CAR was verified by adding the SIRT1 inhibitor EX527, and the expression of SIRT1 and MAPK signaling pathways was detected by Western blot. Iron overload also promoted chondrocyte apoptosis, a process that was reversed by CAR. In addition, CAR reduced NLRP3 inflammasome production via the SIRT1-MAPK pathway, and the SIRT1 inhibitor EX527 inhibited the treatment of OA by CAR.CAR inhibited cartilage degeneration induced by iron overload both in vivo and in vitro. Besides, our study showed that iron overload not only inhibited type II collagen expression but also induced MMP expression by catalyzing the generation of NLRP3 inflammasome. Our results suggest that CAR can treat KOA by promoting SIRT1 expression and inhibiting p38MAPK pathway expression to reduce the production of NLRP3 inflammasome vesicles.


Assuntos
Inflamassomos , Osteoartrite , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Sirtuína 1 , Osteoartrite/tratamento farmacológico , Transdução de Sinais , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA