Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 39(11): 2240-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25186167

RESUMO

P2Y receptors have been implicated in the calcium mobilization by the response to neuroexcitatory substances in neurons and astrocytes, but little is known about P2Y receptors in microglia cells. In the present study, the effects of ADP on the intracellular calcium concentration ([Ca(2+)]i) in cultured dorsal spinal cord microglia were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescence indicator that could monitor real-time alterations of [Ca(2+)]i. Here we show that ADP (0.01-100 µM) causes a rapid increase in [Ca(2+)]i with a dose-dependent manner in cultured microglia. The action of ADP on [Ca(2+)]i was significantly blocked by MRS2211 (a selective P2Y13 receptor antagonist), but was unaffected by MRS2179 (a selective P2Y1 receptor antagonist) or MRS2395 (a selective P2Y12 receptor antagonist), which suggest that P2Y13 receptor may be responsible for ADP-evoked Ca(2+) mobilization in cultured microglia. P2Y13-evoked Ca(2+) response can be obviously inhibited by BAPTA-AM and U-73122, respectively. Moreover, removal of extracellular Ca(2+) (by EGTA) also can obvious suppress the Ca(2+) mobilization. These results means both intracellular calcium and extracellular calcium are potentially important mechanisms in P2Y13 receptor-evoked Ca(2+) mobilization. However, P2Y13 receptor-evoked Ca(2+) response was not impaired after CdCl2 and verapamil administration, which suggest that voltage-operated Ca(2+) channels may be not related with P2Y13-evoked Ca(2+) response. In addition, Ca(2+) mobilization induced by ADP was abolished by different store-operated Ca(2+) channels (SOCs) blocker, 2-APB (50 µM) and SKF-96365 (1 mM), respectively. These observations suggest that the activation of P2Y13 receptor might be involved in the effect of ADP on [Ca(2+)]i in cultured dorsal spinal cord microglia. Furthermore, our results raise a possibility that P2Y13 receptor activation causes Ca(2+) release from Ca(2+) store, which leads to the opening of SOCs.


Assuntos
Difosfato de Adenosina/farmacologia , Cálcio/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA