Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144614

RESUMO

Captured by the low-cost and high theoretical specific capacity, Na-S systems have garnered much attention. However, their intermediate products (dissolved polysulfide) are always out of control. Considering the excellent space confinements and conductivity, they have been regarded as promising candidates. Herein, the hollow spheres with suitable thickness shell (~20 nm) are designed as hosting materials, accompanied by in-depth complexing. Benefitting from the abundant micro-pores (mainly about conical-type and slits-type pores < 1.0 nm), the active S4 molecules are successfully filled in the pores through vacuum tube sealing technology, effectively avoiding the process from solid S8 to liquid Na2S6. As cathode for Na-S systems, their capacity could remain at 920 mAh g−1 at 0.1 C after 100 cycles. Even at 10.0 C, the capacity still remained at about 310 mAh g−1 after 7000 cycles. Supported by the detailed kinetic behaviors, the improvement of ions diffusion behaviors is noted, bringing about the effective thorough redox reactions. Moreover, the enhanced surface-controlling behaviors further induces the evolution of rate properties. Therefore, their stable phase changing is further confirmed through in situ resistances. Thus, the work is anticipated to offer significant design for hosting carbon materials and complexing manners.

2.
Small ; 17(51): e2102641, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34553484

RESUMO

Silicon monoxide (SiO) has been explored and confirmed as a promising anode material of lithium-ion batteries. Compared with pure silicon, SiO possesses a more stable microstructure which makes better comprehensive electrochemical properties. However, the lithiation mechanism remains in dispute, and problems such as poor cyclability, unsatisfactory electrical conductivity, and low initial Coulombic efficiency (ICE) need to be addressed. Additionally, more attention needs to be paid on the internal relationship between electrochemical performances and structures. In this review, the different preparation processes, the derived microstructure of the SiOx , the corresponding lithiation mechanism, and electrochemical properties are summarized. Researches about disproportionation reaction which is regarded as a key point and other modifications are systematically introduced. Closely linked with structure, the advantages and disadvantages of various SiOx anode materials are summarized and analyzed, and the possible directions toward the practical applications of SiOx anode material are presented. In a word, from the preparation and reaction mechanism of the material to the modifications and future development, a complete and systematical review on SiOx anode is presented.

3.
Chemistry ; 27(13): 4249-4269, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073440

RESUMO

Nickel-rich layered transition metal oxides are considered as promising cathode candidates to construct next-generation lithium-ion batteries to satisfy the demands of electrical vehicles, because of the high energy density, low cost, and environment friendliness. However, some problems related to rate capability, structure stability, and safety still hamper their commercial application. In this Review, beginning with the relationships between the physicochemical properties and electrochemical performance, the underlying mechanisms of the capacity/voltage fade and the unstable structure of Ni-rich cathodes are deeply analyzed. Furthermore, the recent research progress of Ni-rich oxide cathode materials through element doping, surface modification, and structure tuning are summarized. Finally, this review concludes by discussing new insights to expand the field of Ni-rich oxides and promote practical applications.

4.
Angew Chem Int Ed Engl ; 60(22): 12539-12546, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33650291

RESUMO

The continuous growth of the solid-electrolyte interface (SEI) and material crushing are the fundamental issues that hinder the application of Ge anodes in lithium-ion batteries. Solving Ge deformation crushing during discharge/charge cycles is challenging using conventional carbon coating modification methods. Due to the chemical stability and high melting point of carbon (3500 °C), Ge/carbon hybridization at the atomic level is challenging. By selecting a suitable carbon source and introducing an active medium, we have achieved the Ge/carbon doping at the atom-level, and this Ge/carbon anode shows excellent electrochemical performance. The reversible capacity is maintained at 1127 mAh g-1 after 1000 cycles (2 A g-1 (2-71 cycles), 4 A g-1 (72-1000 cycles)) with a retention of 84 % compared to the second cycle. The thickness of the SEI is only 17.4 nm after 1000 cycles. The excellent electrochemical performance and stable SEI fully reflect the application potential of this material.

5.
Biosens Bioelectron ; 253: 116183, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452570

RESUMO

Fumonisin (FB) is a pervasive hazardous substance in the environment, presenting significant threats to human health and ecological systems. Thus, the selective and sensitive detection of fumonisin B1 (FB1) is crucial due to its high toxicity and wide distribution in corn, oats, and related products. In this work, we developed a novel and versatile fluorescent aptasensor by combining enzyme-assisted dual recycling amplification with 2D δ-FeOOH-NH2 nanosheets for the determination of FB1. The established CRISPR/Cas12a system was activated by using activator DNA (aDNA), which was released via a T7 exonuclease-assisted recycling reaction. Additionally, the activated Cas12a protein was utilized for non-specifically cleavage of the FAM-labeled single-stranded DNA (ssDNA-FAM) anchored on δ-FeOOH-NH2 nanosheets. The pre-quenched fluorescence signal was restored due to the desorption of the cleaved ssDNA-FAM. Due to the utilization of this T7 exonuclease-Cas12a-δ-FeOOH-NH2 aptasensor for signal amplification, the detection range of FB1 was expanded from 1 pg/mL to 100 ng/mL, with a limit of detection (LOD) as low as 0.45 pg/mL. This study not only provides novel insights into the development of fluorescence biosensors based on 2D nanomaterials combined with CRISPR/Cas12a, but also exhibits remarkable applicability in detecting other significant targets.


Assuntos
Técnicas Biossensoriais , Fumonisinas , Humanos , DNA de Cadeia Simples , Corantes Fluorescentes , Sistemas CRISPR-Cas , Limite de Detecção
6.
Phys Chem Chem Phys ; 15(31): 12800-4, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23799396

RESUMO

A rapid, sensitive and selective fluorescence sensor for detection of Pb(2+) was developed based on a Pb(2+)-induced G-quadruplex and graphene oxide. By using a specific G-rich DNA sequence, this strategy provided a promising alternative to Pb(2+) determination in the presence of Hg(2+) escaping from the use of a masking agent of Hg(2+).


Assuntos
DNA/química , Corantes Fluorescentes/química , Quadruplex G , Grafite/química , Chumbo/análise , Óxidos/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122479, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787675

RESUMO

As traditional methods for detection of heavy metal pollution in water involve complex procedures and require expensive equipment, there is a great deal of interest in the development of rapid and simple methods for determining heavy metal ions in water. Here, a nanobiosensor based on molybdenum disulphide (MoS2) nanosheets and fluorophore (FAM) labeled oligonucleotides was proposed, and fluorescence spectroscopy was adopted for detection of Hg2+ or Ag+ ions in aqueous solution. The principle underlying detection by the sensor involves the formation of T-Hg2+-T or C-Ag+-C mismatches by single-stranded DNA (ssDNA) rich in thymine (T) or cytosine (C), thereby forming stable double-stranded DNA (dsDNA) structures. By exploiting the different adsorption capacity of MoS2 nanosheets for ssDNA and dsDNA, when oligonucleotides were in a single chain state, MoS2 nanosheets possessed a strong adsorption capacity for ssDNA, resulting in fluorescence quenching of FAM. After the addition of Hg2+ or Ag+, ssDNA formed double chains structure, the fluorescence recovered due to the weak adsorption capacity of MoS2 nanosheets for dsDNA. Along this line, an "off-on" mode fluorescence nanobiosensor was designed to alternatively detect these two heavy metal ions in water. The sensor showed high sensitivity and excellent selectivity for both Hg2+ and Ag+ ions, with minimum detection limits of 6.8 nM and 8.9 nM, respectively.


Assuntos
Técnicas Biossensoriais , Mercúrio , Metais Pesados , Prata , Mercúrio/química , Oligonucleotídeos/química , Molibdênio/química , DNA/química , DNA de Cadeia Simples , Íons , Água , Técnicas Biossensoriais/métodos
8.
Materials (Basel) ; 16(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687517

RESUMO

Biological applications of silver nanoparticles (AgNPs) depend on the covalently attached or adsorbed proteins. A series of biological effects of AgNPs within cells are determined by the size, shape, aspect ratio, surface charge, and modifiers. Herein, the morphology dependent interaction between AgNPs and protein was investigated. AgNPs with three different morphologies, such as silver nanospheres, silver nanorods, and silver nanotriangles, were employed to investigate the morphological effect on the interaction with a model protein: bovine serum albumin (BSA). The adsorptive interactions between BSA and the AgNPs were probed by UV-Vis spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), Fourier transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), and circular dichroism (CD) techniques. The results revealed that the particle size, shape, and dispersion of the three types of AgNPs markedly influence the interaction with BSA. Silver nanospheres and nanorods were capsulated by protein coronas, which led to slightly enlarged outer size. The silver nanotriangles evolved gradually into nanodisks in the presence of BSA. Fluorescence spectroscopy confirmed the static quenching the fluorescence emission of BSA by the three AgNPs. The FTIR and CD results suggested that the AgNPs with different morphologies had different effects on the secondary structure of BSA. The silver nanospheres and silver nanorods induced more pronounced structural changes than silver nanotriangles. These results suggest that the formation of a protein corona and the aggregation behaviors of AgNPs are markedly determined by their inherent morphologies.

9.
J Colloid Interface Sci ; 639: 96-106, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36804797

RESUMO

A negative electrode with high capacity and rate capability is essential to match the capacity of a positive electrode and maximize the overall charge storage performance of an aqueous alkali battery (AAB). Due to the 3-electron redox reactions within a wide negative potential range, bismuth (Bi)-based compounds are recognized as efficient negative electrode materials. Herein, hierarchically structured bismuth oxyformate (BiOCOOH) assembled by ultrathin nanosheets was prepared by a solvothermal reaction for application as negative material for AAB. Given the efficient ion diffusion channels and sufficient exposure of the inner surface area, as well as the pronounced 3-electron redox activity of Bi species, the BiOCOOH electrode offered a high specific capacity (Cs, 229 ± 4 mAh g-1 at 1 A g-1) and superior rate capability (198 ± 6 mAh g-1 at 10 A g-1) within 0 âˆ¼ -1 V. When pairing with the Ni3S2-MoS2 battery electrode, the AAB delivered a high energy density (Ecell, 217 mWh cm-2 at a power density (Pcell) of 661 mW cm-2), showing the potential of such a novel BiOCOOH negative material in battery-type charge storage.

10.
Langmuir ; 28(25): 9282-7, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22642619

RESUMO

For an ideal solution, an analytical expression for the macromolecule concentration, electrolyte concentration, and solution osmotic pressure is obtained on the basis of the van't Hoff equation and the Donnan equilibrium. The expression was further applied to a colloid solution of about 3 nm glutathione-stabilized gold nanoparticles. The concentration of the colloid solution and the average net ion charge number for each gold nanoparticle were determined with the measured osmotic pressure data. Meanwhile, the gold contents of the solutions were analyzed by means of atomic absorption spectrophotometry, and the results were combined with the determined concentration of gold nanoparticle colloids to determine that the average number of gold atoms per 3 nm gold nanoparticle is 479, which is 1/1.7 times the number of atoms in bulk metallic gold of the same size. The same proportion also occurred in the 2 nm 4-mercaptobenzoic acid monolayer-protected gold nanoparticles prepared by Ackerson et al., who utilized the quantitative high-angle annular dark-field scanning transmission electron microscope to determine the average number of gold atoms per nanoparticle (Ackerson, C. J.; Jadzinsky, P. D.; Sexton J. Z.; Bushnell, D. A.; Kornberg, R. D. Synthesis and Bioconjugation of 2 and 3 nm-Diameter Gold Nanoparticles. Bioconjugate Chem. 2010, 21, 214-218).


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Coloides , Pressão Osmótica , Tamanho da Partícula , Soluções , Termodinâmica
11.
Materials (Basel) ; 15(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35888425

RESUMO

A nanoparticle, under biological milieu, is inclined to be combined with various biomolecules, particularly protein, generating an interfacial corona which provides a new biological identity. Herein, the binding interaction between silver nanoparticles (AgNPs) and human serum albumin (HSA) was studied with transmission electron microscopy (TEM), circular dichroism (CD), and multiple spectroscopic techniques. Due to the ground state complex formed mainly through hydrophobic interactions, the fluorescence titration method proved that intrinsic fluorescence for HSA was probably statically quenched by AgNPs. The complete thermodynamic parameters were derived, indicating that the interaction between HSA and AgNPs is an entropy-driven process. Additionally, synchronous fluorescence and CD spectrum results suggested the conformational variation it has upon binding to AgNPs and the α-helix content has HSA visibly decreased. The kinetic experiments proved the double hysteresis effect has in HSA's binding to the AgNPs surface. Moreover, the binding has between HSA and AgNPs follows the pseudo-second-order kinetic characteristic and fits the Freundlich model for multilayer adsorption. These results facilitate the comprehension about NPs' underlying biological effects under a physiological environment and promote the secure applications of NPs biologically and medically.

12.
J Colloid Interface Sci ; 605: 828-850, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371427

RESUMO

Although lithium-ion batteries (LIBs) have many advantages, they cannot satisfy the demands of numerous large energy storage industries owing to their high cost, low security, and low resource richness. Aqueous zinc-ion batteries (ZIBs) with low cost, high safety, and high synergistic efficiency have attracted an increasing amount of attention and are considered a promising choice to replace LIBs. However, the existing cathode materials for ZIBs have many shortcomings, such as poor electron and zinc ion conductivity and complex energy storage mechanisms. Thus, it is crucial to identify a cathode material with a stable structure, substantial limit, and suitability for ZIBs. In this review, several typical cathode materials for ZIBs employed in recent years and their detailed energy storage mechanisms are summarized, and various methods to enhance the electrochemical properties of ZIBs are briefly introduced. Finally, the existing problems and expected development directions of ZIBs are discussed.

13.
J Fluoresc ; 21(1): 409-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20953826

RESUMO

This study was designed to examine the interaction of 4'-O-(a-L-Cladinosyl) daunorubicin (DNR-D5), a disaccharide anthracycline with calf thymus deoxyribonucleic acid (ctDNA) by UV/Vis in combination with fluorescence spectroscopy and molecular modeling techniques under physiological conditions (Britton-Robinson buffer solutions, pH = 7.4). By the analysis of UV/Vis spectrum, it was observed that upon binding to ctDNA the anthraquinone chromophore of DNR-D5 could slide into the base pairs. Moreover, the large binding constant indicated DNR-D5 had a high affinity with ctDNA. At the same time, fluorescence spectra suggested that the quenching mechanism of the interaction of DNR-D5 to ctDNA was a static quenching type. The binding constants between DNR-D5 and ctDNA were calculated based on fluorescence quenching data at different temperatures. The negative ∆G implied that the binding process was spontaneous, and negative ∆H and negative ΔS suggested that hydrogen bonding force most likely played a major role in the binding of DNR-D5 to ctDNA. Moreover, the results obtained from molecular docking corroborate the experimental results obtained from spectroscopic investigations.


Assuntos
Antraciclinas/química , DNA/química , Dissacarídeos/química , Espectrofotometria Ultravioleta/métodos , Animais , Bovinos , Modelos Moleculares
14.
J Fluoresc ; 21(5): 1879-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21455760

RESUMO

The binding of quercetin to lysozyme (LYSO) in aqueous solution was investigated by fluorescence spectroscopy, UV-vis absorption spectroscopy and molecular simulation at pH 7.4. The fluorescence quenching of LYSO by addition of quercetin is due to static quenching, the binding constants, K ( a ), were 3.63 × 10(4), 3.31 × 10(4) and 2.85 × 10(4) L·mol(-1) at 288, 298 and 308 K, respectively. The thermodynamic parameters, enthalpy change, ∆H, and entropy change, ∆S, were noted to be -7.56 kJ·mol(-1) and 61.07 J·mol(-1)·K(-1). The results indicated that hydrophobic interaction may play a major role in the binding process. The distance r between the donor (LYSO) and acceptor (quercetin) was determined as 3.34 nm by the fluorescence resonance energy transfer. The synchronous fluorescence spectroscopy showed the polarity around the tryptophan residues increased and the hydrophobicity decreased. Furthermore, the study of molecular simulation indicated that quercetin could bind to the active site (a pocket made up of 24 amino-acid residues) of LYSO mainly via hydrophobic interactions and that there were hydrogen interactions between the residues (Gln 57, Ile 98) of LYSO and quercetin. The accessible surface area (ASA) calculation verified the important roles of tryptophan (Trp) residues during the binding process.


Assuntos
Corantes Fluorescentes/química , Simulação de Dinâmica Molecular , Muramidase/química , Quercetina/química , Sítios de Ligação , Fluorescência , Modelos Moleculares , Estrutura Molecular , Muramidase/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
15.
Mater Sci Eng C Mater Biol Appl ; 119: 111557, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321621

RESUMO

For this study, three novel types of sensors comprised of CoAl-layered double oxyhydroxide (CoAl-LDH), CoAl-LDH/reduced graphene oxide (rGO), and CoAl-OOH/rGO nanosheets were successfully fabricated on glassy carbon electrodes (GCEs) and employed for the electrochemical detection of epinephrine (EP) and acetaminophen (AC). Interestingly, we found that the CoAl-OOH/rGO/GCE was more suitable for the determination of EP and AC in contrast to the CoAl-LDH and CoAl-OOH/rGO sensors. Differential pulse voltammetry results revealed that the CoAl-OOH/rGO/GCE delivered excellent electrocatalytic activity. The sensitivities and detection limits for the simultaneous measurement of EP and AC were 12.2 µA µM-1 cm-2, 0.023 µM L-1, and 4.87 µA µM-1 cm-2, 0.058 µM L-1, respectively. Especially, the as-obtained CoAl-OOH/rGO/GCE was successfully utilized for the detection in pharmaceutical samples and biological fluids with satisfactory results. Owing to its outstanding electrocatalytic activity and superior sensitivity, the CoAl-OOH/rGO/GCE could be beneficial to construct a promising electrochemical sensor for the detection of EP and AC.


Assuntos
Grafite , Preparações Farmacêuticas , Acetaminofen , Carvão Mineral , Técnicas Eletroquímicas , Eletrodos , Epinefrina/análise
16.
Nanoscale ; 13(9): 5058-5068, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33650622

RESUMO

The dissolution of polysulfides in an electrolyte is a thermodynamically favorable process, which in theory means that the shuttle effect in lithium-sulfur batteries (LSBs) cannot be completely suppressed. So, it is very important to modify the separator to prevent the migration of polysulfides to the lithium anode. The traditional coating modification process of the separator is cumbersome and uses a solvent that is harmful to the environment, and too many inactive components affect the overall energy density of the battery. It is thus imperative to find a simple and environmentally friendly modification process of the separator. In this study, a fast chemical film-forming method is proposed to modify the separator of a lithium-sulfur battery using tannic acid (TA) and cobalt ions (Co2+). This method requires only simple steps and environmentally friendly raw materials to obtain a thin coating (only 5.83 nm) that can effectively inhibit the shuttle effect. The lithium-sulfur battery with the TA-Co separator shows superior long cycle performance. After 500 cycles at 0.5 C, the capacity decay rate of each cycle is only 0.065%. On the other hand, the TA-Co separator can inhibit the growth of lithium dendrites and help to build a stable lithium anode, which can exhibit minimal polarization (56 mV) in a lithium-lithium symmetrical battery at the current density of 2 mA cm-2. The rapid and simple modification method proposed in this study has a certain reference value for the future large-scale application of lithium sulfur batteries.

17.
ACS Appl Mater Interfaces ; 13(8): 10064-10070, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33591734

RESUMO

A binder is an important component in lithium-ion batteries and plays a significant role in maintaining the properties of active substances. Most studies in the field of binders have only focussed on physical properties such as bonding performance. Here, a polyacrylic acid-modified binder was designed and adapted to Li[Ni0.8Co0.1Mn0.1]O2, which enhanced the electrochemical stability of Li[Ni0.8Co0.1Mn0.1]O2 from 30.2 to 66.6% (300 cycles at 1 C). We for the first time discovered that this was caused by a chemical reaction between polyacrylic acid and the residual lithium on the surface during the cycling, which formed a lithium propionic acid coating layer and maintained the stability of the layered structure.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(5): 1324-8, 2010 May.
Artigo em Zh | MEDLINE | ID: mdl-20672627

RESUMO

The interaction of DNR-D3 (daunorubicin derivative) synthesized in our laboratory with ctDNA was investigated by UV spectrum and fluorescence spectrum under physiological conditions (pH 7.4) for the first time. The red shifts and hypochromicities were observed from the absorption titration experiments. These results suggest that DNR-D3 was intercalated into the DNA base pairs. Through the fluorescence quenching data measured at different temperatures (20 degrees C, 30 degrees C and 37 degrees C), it is known that the quenching mechanism of fluorescence of DNR-D3 by ctDNA is a static quenching type. On the other hand, the binding constant, the number of binding sites and thermodynamic parameters were also obtained. These data also indicate that the binding mode of the interaction between DNR-D3 and ctDNA is intercalation. Additionally, the types of interaction force are mainly hydrogen bonding and electrostatic interaction, and the binding is exothermic enthalpy-entropy cooperative driven process. When the degree of fluorescence quenching of DNR-D3 is 50%, the ratio of the molar concentration of DNR-D3 to ctDNA is 7/25, which indicates that the DNR-D3 anthracycline was intercalated into the DNA base pairs and that DNR-D3 showed a strong anti-cancer activity. DNR-D3 is expected to become one of the drug candidates from our investigations.


Assuntos
DNA/química , Daunorrubicina/química , Sítios de Ligação , Substâncias Intercalantes , Análise Espectral , Termodinâmica
19.
Mater Sci Eng C Mater Biol Appl ; 111: 110830, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279803

RESUMO

In biological milieu, nanoparticles tend to bind with a variety of biomolecules, particularly proteins, thereby forming an interfacial corona that endows them with a new biological identity. A thorough understanding of these protein coronas is likely to provide insights into nanoparticle biodistribution and nanoparticle-mediated cytotoxicity, leading to the expansion of potential applications and the further elucidation of the biological impacts of nanoparticles in biomedical applications. Herein, three differently shaped AuNPs were synthesized, namely nanospheres (AuNSPs), nanorods (AuNRs), and nanostars (AuNSs). The effects of the morphologies of AuNPs on the structures and functions of adsorbed fibrinogen (FIB) and trypsin (Try) were investigated via circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). Simultaneously, two different types of proteins were employed to investigate their influences on the stability and aggregation of AuNPs, using UV-vis absorption spectroscopy, transmission electron microscopy (TEM), microscale thermophoresis (MST), and dynamic light scattering (DLS). It was found that, compared to AuNSPs, the irregularly shaped AuNPs (e.g., AuNRs and AuNSs) had the capacity to induce greater changes in the secondary structures of the proteins. Furthermore, it appeared that the differently shaped AuNPs had obvious effects on the secondary structure of Try, and slight effects on the secondary structure of FIB. Consequently, these preliminary results indicated that the formation of protein corona, as well as the aggregation behaviors of the AuNPs was intimately related to the specific shapes of the AuNPs and the unique structures of the proteins.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Proteínas/metabolismo , Dicroísmo Circular , Difusão Dinâmica da Luz , Fibrinogênio/química , Nanopartículas Metálicas/ultraestrutura , Nanosferas/química , Nanotubos/química , Tamanho da Partícula , Ligação Proteica , Coroa de Proteína , Estrutura Secundária de Proteína , Proteínas/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Tripsina/química
20.
ACS Appl Mater Interfaces ; 12(52): 57859-57869, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33337136

RESUMO

Separator modification with metal oxide and carbon composite recently has become a potential and competitive way to confine polysulfide diffusion and mitigate the shuttling effect. However, other modification methods also have an impact on the stability of the modified layer and the enhancement of electrochemical performance. Herein, we first design a novel bifunctional separator combined with one self-assembled FeOOH layer via a chemical way and one conductive g-C3N4/KB layer by physical coating. Different from directly coating the metal oxide and carbon composite on the separator, the self-assembled FeOOH layer is firmly formed on the PP separator, which enables the chemical capture of the soluble polysulfide and prohibit the shuttling effect. Then, the coated g-C3N4/KB layer is further introduced to greatly enhance the transportation of lithium ions and physically confine the migration of intermediates. As a result, the battery with this bifunctional separator (G-SFO) achieves outstanding rate capacities (1000, 901, and 802 mA h/g at 0.5, 1, and 2 C). After 900 cycles at 1 C, it also shows excellent long cycle performance, with relatively low fading (0.055%). This original fabrication will present a new and feasible strategy for fabricating a bifunctional separator with metal oxide and carbon material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA