RESUMO
This study focused on the potential therapeutic effect of baicalin on collagen-induced arthritis (CIA) in rats and the underlying mechanisms. The CIA rats were injected with baicalin (50, 100, or 200 mg/kg) once daily for 30 days. The rats were monitored for clinical severity of arthritis, and joint tissues were used for radiographic assessment and histologic examination. We quantified tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in experimental animals and used Western blots to assess levels of protein abundance, phosphorylation, and acetylation of nuclear factor (NF)-κB p65 and sirtuin 1 (sirt1) protein expression in joint tissues. Human fibroblast-like synoviocytes from rheumatoid arthritis (HFLS-RA) were adopted in further mechanistic investigations. Baicalin intraperitoneal injection for 30 days dose-dependently blocked clinical manifestations of CIA, such as functional impairment and swollen red paws. Meanwhile, it alleviated collagen-induced joint inflammation injury and inhibited the secretion of TNF-α and IL-1ß in both rat synovium and HFLS-RA. Further mechanistic investigations revealed that baicalin suppresses NF-κB p65 protein expression and phosphorylation in synovial tissue and human-derived synoviocytes. Moreover, the acetylation of NF-κB p65 was downregulated by baicalin, which negatively correlates with the baicalin-induced upregulation of sirt1 expression in the same conditions. The data indicate that CIA in rats can be alleviated by baicalin treatment via relieving joint inflammation, which is related to the suppression of synovial NF-κB p65 protein expression and the elevation of its deacetylation by sirt1.
Assuntos
Artrite Experimental/tratamento farmacológico , Flavonoides/uso terapêutico , Transdução de Sinais , Fator de Transcrição RelA/antagonistas & inibidores , Acetilação , Animais , Artrite Experimental/imunologia , Feminino , Flavonoides/farmacologia , Humanos , Interleucina-1beta/metabolismo , Ratos , Ratos Wistar , Sirtuína 1/metabolismo , Membrana Sinovial/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Breast cancer is the most common type of cancer amongst women worldwide, and numerous microRNAs (miRNAs/miRs) are involved in the initiation and progression of breast cancer. The aim of the present study was to identify hub miRNAs and determine the underlying mechanisms regulated by these miRNAs in breast cancer. Breast invasive carcinoma transcriptome data (including mRNAs and miRNAs), and clinical data were acquired from The Cancer Genome Atlas database. Differential gene expression analysis, coexpression network analysis, gene set enrichment analysis (GSEA) and prognosis analysis were used to screen the hub miRNAs and explore their functions. Functional experiments were used to determine the underlying mechanisms of the hub miRNAs in breast cancer cells. The results revealed that low miR150 expression predicted a more advanced disease stage, and was associated with a less favorable prognosis. Through the combined use of five miRNAtarget gene prediction tools, 31 potential miR150 target genes were identified. GSEA revealed that low miR150 expression was associated with the upregulation of several cancerassociated signaling pathways, and the downregulation of several tumor suppressor genes. Furthermore, miR150 independently affected overall survival in patients, and interacted with its target genes to indirectly affect overall and diseasefree survival. Functional experiments demonstrated that miR150 positively regulated B and T lymphocyte attenuator (BTLA), and the downregulation of miR150 and BTLA combined promoted cell migration. In conclusion, the present study revealed that low miR150 expression was associated with less favorable clinical features, upregulation of several carcinogenic signaling pathways, and poor patient survival. Additionally, a miR150BTLA axis was suggested to regulate cell viability and migration.
Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , MicroRNAs/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Prognóstico , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais , Análise de SobrevidaRESUMO
RNA-dependent RNA polymerase (RdRp) was solubilized from crude extracts of Hibiscus cannabinus infected by Hibiscus chlorotic ringspot virus (HCRSV), a member of the Carmoviridae. After treatment of the extracts with micrococcal nuclease to remove the endogenous templates, the full-length genomic RNA and the two subgenomic RNAs were efficiently synthesized by the partially purified RdRp complex in vitro. When the full-length RNAs of Potato virus X, Tobacco mosaic virus, Odontoglossum ringspot virus and Cucumber mosaic virus were used as templates, no detectable RNA was synthesized. Synthesis of HCRSV minus-strand RNA was shown to initiate opposite the 3'-terminal two C residues at the 3' end in vitro and in vivo. The CCC-3' terminal nucleotide sequence was optimal and nucleotide variations from CCC-3' diminished minus-strand synthesis. In addition, two putative stem-loops (SLs) located within the 3'-terminal 87 nt of HCRSV plus-strand RNA were also essential for minus-strand RNA synthesis. Deletion or disruption of the structure of these two SLs severely reduced or abolished RNA synthesis. HCRSV RNA in which the two SLs were replaced with the SLs of Turnip crinkle virus could replicate in kenaf protoplasts, indicating that functionally conserved structure, rather than nucleotide sequence, plays an important role in the minus-strand synthesis of HCRSV. Taken together, the specific sequence CCC at the 3' terminus and the two SLs structures located in the 3'UTR are essential for efficient minus-strand synthesis of HCRSV.
Assuntos
Regiões 3' não Traduzidas/química , Carmovirus/genética , Hibiscus/virologia , RNA Viral/biossíntese , Regiões 3' não Traduzidas/fisiologia , Sequência de Bases , Dados de Sequência Molecular , RNA Viral/química , RNA Polimerase Dependente de RNA/metabolismo , Moldes Genéticos , Replicação ViralRESUMO
Sequence comparison of a non-biologically active full-length cDNA clone of Odontoglossum ringspot virus (ORSV) pOT1 with a biologically active ORSV cDNA clone pOT2 revealed a single nucleotide change of T-->C at position 211. This resulted in the change of Phe50 in OT2 to Ser50 in OT1. It was not the nucleotide but the amino acid change of Phe50 that was responsible for the inability of OT1 to replicate. Time-course experiments showed that no minus-strand RNA synthesis was detected in mutants with a Phe50 substitution. Corresponding mutants in Tobacco mosaic virus (TMV) showed identical results, suggesting that Phe50 may play an important role in replication in all tobamoviruses. Complementation of a full-length mutant OT1 was demonstrated in a co-infected local-lesion host, a systemic host and protoplasts by replication-competent mutants tORSV.GFP or tORSV.GFPm, and further confirmed by co-inoculation using tOT1.GFP+tORSV (TTC), suggesting that ORSV contains no RNA sequence inhibitory to replication in trans. Surprisingly, a small number of exact revertants were detected in plants inoculated with tOT1+tORSV.GFPm or tOT1.GFP+tORSV (TTC). No recombination was detected after screening of silent markers in virus progeny extracted from total RNA or viral RNA from inoculated and upper non-inoculated leaves as well as from transfected protoplasts. Exact reversion from TCT (OT1) to TTT (OT2), rather than recombination, restored its replication function in co-inoculated leaves of Nicotiana benthamiana.