Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448735

RESUMO

Synthetic signaling receptors enable programmable cellular responses coupling with customized inputs. However, engineering a designer force-sensing receptor to rewire mechanotransduction remains largely unexplored. Herein, we introduce nongenetically engineered artificial mechanoreceptors (AMRs) capable of reprogramming non-mechanoresponsive receptor tyrosine kinases (RTKs) to sense user-defined force cues, enabling de novo-designed mechanotransduction. AMR is a modular DNA-protein chimera comprising a mechanosensing-and-transmitting DNA nanodevice grafted on natural RTKs via aptameric anchors. AMR senses intercellular tensile force via an allosteric DNA mechano-switch with tunable piconewton-sensitive force tolerance, actuating a force-triggered dynamic DNA assembly to manipulate RTK dimerization and activate intracellular signaling. By swapping the force-reception ligands, we demonstrate the AMR-mediated activation of c-Met, a representative RTK, in response to the cellular tensile forces mediated by cell-adhesion proteins (integrin, E-cadherin) or membrane protein endocytosis (CI-M6PR). Moreover, AMR also allows the reprogramming of FGFR1, another RTK, to customize mechanobiological function, for example, adhesion-mediated neural stem cell maintenance.

2.
J Biol Chem ; 299(4): 103045, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822326

RESUMO

Glucose-stimulated insulin secretion of pancreatic ß cells is essential in maintaining glucose homeostasis. Recent evidence suggests that the Nephrin-mediated intercellular junction between ß cells is implicated in the regulation of insulin secretion. However, the underlying mechanisms are only partially characterized. Herein we report that GIV is a signaling mediator coordinating glucose-stimulated Nephrin phosphorylation and endocytosis with insulin secretion. We demonstrate that GIV is expressed in mouse islets and cultured ß cells. The loss of function study suggests that GIV is essential for the second phase of glucose-stimulated insulin secretion. Next, we demonstrate that GIV mediates the high glucose-stimulated tyrosine phosphorylation of GIV and Nephrin by recruiting Src kinase, which leads to the endocytosis of Nephrin. Subsequently, the glucose-induced GIV/Nephrin/Src signaling events trigger downstream Akt phosphorylation, which activates Rac1-mediated cytoskeleton reorganization, allowing insulin secretory granules to access the plasma membrane for the second-phase secretion. Finally, we found that GIV is downregulated in the islets isolated from diabetic mice, and rescue of GIV ameliorates the ß-cell dysfunction to restore the glucose-stimulated insulin secretion. We conclude that the GIV/Nephrin/Akt signaling axis is vital to regulate glucose-stimulated insulin secretion. This mechanism might be further targeted for therapeutic intervention of diabetic mellitus.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
Nano Lett ; 23(5): 1801-1809, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826373

RESUMO

The reprogramming of cell signaling and behavior through the artificial control of cell surface receptor oligomerization shows great promise in biomedical research and cell-based therapy. However, it remains challenging to achieve combinatorial recognition in a complicated environment and logical regulation of receptors for desirable cellular behavior. Herein, we develop a logic-gated DNA nanodevice with responsiveness to multiple environmental inputs for logically controlled assembly of heterogeneous receptors to modulate signaling. The "AND" gate nanodevice uses an i-motif and an ATP-binding aptamer as environmental cue-responsive units, which can successfully implement a logic operation to manipulate receptors on the cell surface. In the presence of both protons and ATP, the DNA nanodevice is activated to selectively assemble MET and CD71, which modulate the HGF/MET signaling, resulting in cytoskeletal reorganization to inhibit cancer cell motility in a tumor-like microenvironment. Our strategy would be highly promising for precision therapeutics, including controlled drug release and cancer treatment.


Assuntos
DNA , Neoplasias , Humanos , DNA/genética , Oligonucleotídeos , Transdução de Sinais , Neoplasias/tratamento farmacológico , Trifosfato de Adenosina , Microambiente Tumoral
4.
Biol Res ; 56(1): 59, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951961

RESUMO

Neural progenitor cells (NPCs) are essential for in vitro drug screening and cell-based therapies for brain-related disorders, necessitating well-defined and reproducible culture systems. Current strategies employing protein growth factors pose challenges in terms of both reproducibility and cost. In this study, we developed a novel DNA-based modulator to regulate FGFR signaling in NPCs, thereby facilitating the long-term maintenance of stemness and promoting neurogenesis. This DNA-based FGFR-agonist effectively stimulated FGFR1 phosphorylation and activated the downstream ERK signaling pathway in human embryonic stem cell (HESC)-derived NPCs. We replaced the basic fibroblast growth factor (bFGF) in the culture medium with our DNA-based FGFR-agonist to artificially modulate FGFR signaling in NPCs. Utilizing a combination of cell experiments and bioinformatics analyses, we showed that our FGFR-agonist could enhance NPC proliferation, direct migration, and promote neurosphere formation, thus mimicking the functions of bFGF. Notably, transcriptomic analysis indicated that the FGFR-agonist could specifically influence the transcriptional program associated with stemness while maintaining the neuronal differentiation program, closely resembling the effects of bFGF. Furthermore, our culture conditions allowed for the successful propagation of NPCs through over 50 passages while retaining their ability to efficiently differentiate into neurons. Collectively, our approach offers a highly effective method for expanding NPCs, thereby providing new avenues for disease-in-dish research and drug screening aimed at combating neural degeneration.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Humanos , Reprodutibilidade dos Testes , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , DNA/metabolismo , DNA/farmacologia , Diferenciação Celular , Células Cultivadas
5.
Nano Lett ; 22(21): 8445-8454, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36255126

RESUMO

Receptor oligomerization is a highly complex molecular process that modulates divergent cell signaling. However, there is a lack of molecular tools for systematically interrogating how receptor oligomerization governs the signaling response. Here, we developed a DNA origami-templated aptamer nanoarray (DOTA) that enables precise programming of the oligomerization of receptor tyrosine kinases (RTK) with defined valency, distribution, and stoichiometry at the ligand-receptor interface. The DOTA allows for advanced receptor manipulations by arraying either monomeric aptamer ligands (mALs) that oligamerize receptor monomers to elicit artificial signaling or dimeric aptamer ligands (dALs) that preorganize the receptor dimer to recapitulate natural activation. We demonstrated that the multivalency and nanoscale spacing of receptor oligomerization coordinately influence the activation level of receptor tyrosine kinase signaling. Furthermore, we illustrated that DOTA-modulated receptor oligomerization could function as a signaling switch to promote the transition from epithelia to mesenchymal-like cells, demonstrating robust control over cellular behaviors. Together, we present a versatile all-in-one DNA nanoplatform for the systematical investigation and regulation of receptor-mediated cellular response.


Assuntos
DNA , Receptores Proteína Tirosina Quinases , Ligantes , Receptores Proteína Tirosina Quinases/genética , Oligonucleotídeos , Transdução de Sinais
6.
Angew Chem Int Ed Engl ; 62(31): e202305227, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37336759

RESUMO

MicroRNAs (miRNAs) have emerged as promising diagnostic biomarkers and therapeutic targets in various diseases. However, there is currently a lack of molecular strategies that can effectively use disease-associated extracellular miRNAs as input signals to drive therapeutic functions. Herein, we present a modular and programmable miRNA-responsive chimeric DNA receptor (miRNA-CDR) capable of biomarker-driven therapy. By grafting a miRNA-responsive DNA nanodevice on a natural membrane receptor via aptamer anchoring, miRNA-CDR can sense extracellular miRNA levels and autonomously induce dimerization-mediated receptor activation via the complementary-mediated strand displacement reaction-induced dynamic DNA assembly. The sequence programmability of miRNA-CDR allows it to sense and respond to a user-defined miRNA with tunable sensitivity. Moreover, the miRNA-CDR is versatile and customizable to reprogram desirable signaling output via adapting a designated receptor, such as MET and FGFR1. Using a mouse model of drug-induced acute liver injury (DILI), we demonstrate the functionality of a designer miRNA-CDR in rewiring the recognition of the DILI-elevated miR-122 to promote MET signaling of hepatocytes for biomarker-driven in situ repair and liver function restoration. Our synthetic miRNA-CDR platform provides a novel molecular device enabling biomarker-driven therapeutic cellular response, potentially paving the way for improving the precision of cell therapy in regenerative medicine.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , MicroRNAs , Receptores Artificiais , Humanos , MicroRNAs/genética , Biomarcadores , Hepatócitos , DNA
7.
Development ; 146(3)2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30696709

RESUMO

Cytoskeletal dynamics are involved in multiple cellular processes during oocyte meiosis, including spindle organization, actin-based spindle migration and polar body extrusion. Here, we report that the vesicle trafficking protein Rab23, a GTPase, drives the motor protein Kif17, and that this is important for spindle organization and actin dynamics during mouse oocyte meiosis. GTP-bound Rab23 accumulated at the spindle and promoted migration of Kif17 to the spindle poles. Depletion of Rab23 or Kif17 caused polar body extrusion failure. Further analysis showed that depletion of Rab23/Kif17 perturbed spindle formation and chromosome alignment, possibly by affecting tubulin acetylation. Kif17 regulated tubulin acetylation by associating with αTAT and Sirt2, and depletion of Kif17 altered expression of these proteins. Moreover, depletion of Kif17 decreased the level of cytoplasmic actin, which abrogated spindle migration to the cortex. The tail domain of Kif17 associated with constituents of the RhoA-ROCK-LIMK-cofilin pathway to modulate assembly of actin filaments. Taken together, our results demonstrate that the Rab23-Kif17-cargo complex regulates tubulin acetylation for spindle organization and drives actin-mediated spindle migration during meiosis.


Assuntos
Cinesinas/metabolismo , Meiose/fisiologia , Oócitos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Acetilação , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Animais , Cinesinas/genética , Quinases Lim/genética , Quinases Lim/metabolismo , Camundongos , Oócitos/citologia , Transdução de Sinais/fisiologia , Sirtuína 2/genética , Sirtuína 2/metabolismo , Fuso Acromático/genética , Tubulina (Proteína)/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
8.
Chembiochem ; 23(18): e202200119, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35491242

RESUMO

The advent of DNA nanotechnology has paved the way for the development of nanoscale robotics capable of executing smart and sophisticated tasks in a programmed and automatic manner. The programmability and customizable functionality of designer DNA nanorobots interfacing with biology would offer great potential for basic and applied research in the interdisciplinary fields of chemistry, biology, and medicine. This review aims to summarize the latest progress in designer DNA nanorobotics enabling programmable functions. We first describe the state-of-art engineering principles and the functional modules used in the rational design of a dynamic DNA nanorobot. Subsequently, we summarize the distinct types of DNA nanorobots performing sensing tasks, sensing-and-actuation, or continuous actuation, highlighting the versatility of designer DNA nanorobots in accurate biosensing, targeted drug delivery, and autonomous molecular operations to promote desired cellular behavior. Finally, we discuss the challenges and opportunities in the development of functional DNA nanorobotics for biomedical applications. We envision that significant progress in DNA-enabled nanorobotics with programmable functions will improve precision medicine in the future.


Assuntos
Nanoestruturas , Robótica , DNA , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Nanotecnologia , Preparações Farmacêuticas
9.
Angew Chem Int Ed Engl ; 61(36): e202205902, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35751134

RESUMO

Synthetically directing T-cells against tumors emerges as a promising strategy in immunotherapy, while it remains challenging to smartly engage T cells with tunable immune response. Herein, we report an intelligent molecular platform to engineer T-cell recognition for selective activation to potently kill cancer cells. To this end, we fabricated a hybrid conjugate that uses a click-type DNA-protein conjugation to equip the T cell-engaging antibody with two distinct programmable DNA nanoassemblies. By integrating multiple aptameric antigen-recognitions within a dynamic DNA circuit, we achieved combinatorial recognition of triple-antigens on cancer cells for selective T-cell activation after high-order logic operation. Moreover, by coupling a DNA nanostructure, we precisely defined the valence of the antigen-binding aptamers to tune avidity, realizing effective tumor elimination in vitro and in vivo. Together, we present a versatile and programmable strategy for synthetic immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Anticorpos , Antígenos , DNA/química , Humanos , Imunoterapia , Neoplasias/terapia
10.
Mediators Inflamm ; 2021: 9958051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34035661

RESUMO

Tumor angiogenesis plays a crucial role in colorectal cancer development. Dysregulation of the receptor for the advanced glycation end-products (RAGE) transmembrane signaling mediates inflammation, resulting in various cancers. However, the mechanism of the RAGE signaling pathway in modulating development of colorectal cancer has not been explored. In this study, an aptamer-based RAGE antagonist (Apt-RAGE) was used to inhibit interaction between RAGE and S100B, thus blocking downstream NFκB-mediated signal transduction. In vitro results showed that Apt-RAGE effectively inhibited S100B-dependent and S100B-independent RAGE/NFκB activation in colorectal HCT116 cancer cells, thus decreasing proliferation and migration of cells. Notably, expression and secretion of VEGF-A were inhibited, implying that Apt-RAGE can be used as an antiangiogenesis agent in tumor therapy. Moreover, Apt-RAGE inhibited tumor growth and microvasculature formation in colorectal tumor-bearing mice. Inhibition of angiogenesis by Apt-RAGE was positively correlated with suppression of the RAGE/NFκB/VEGF-A signaling. The findings of this study show that Apt-RAGE antagonist is a potential therapeutic agent for treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Produtos Finais de Glicação Avançada , Animais , Neoplasias Colorretais/tratamento farmacológico , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Camundongos , NF-kappa B/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
11.
Angew Chem Int Ed Engl ; 60(12): 6733-6743, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33331089

RESUMO

Selective modulation of ligand-receptor interaction is essential in targeted therapy. In this study, we design an intelligent "scan and unlock" DNA automaton (SUDA) system to equip a native protein-ligand with cell-identity recognition and receptor-mediated signaling in a cell-type-specific manner. Using embedded DNA-based chemical reaction networks (CRNs) on the cell surface, SUDA scans and evaluates molecular profiles of cell-surface proteins via Boolean logic circuits. Therefore, it achieves cell-specific signal modulation by quickly unlocking the protein-ligand in proximity to the target cell-surface to activate its cognate receptor. As a proof of concept, we non-genetically engineered hepatic growth factor (HGF) with distinct logic SUDAs to elicit target cell-specific HGF signaling and wound healing behaviors in multiple heterogeneous cell types. Furthermore, the versatility of the SUDA strategy was shown by engineering tumor necrotic factor-α (TNFα) to induce programmed cell death of target cell subpopulations through cell-specific modulation of TNFR1 signaling.


Assuntos
DNA/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , DNA/química , Fator de Crescimento de Hepatócito/química , Humanos , Ligantes , Modelos Moleculares , Receptores Tipo I de Fatores de Necrose Tumoral/química , Transdução de Sinais
12.
Angew Chem Int Ed Engl ; 60(50): 26087-26095, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34490693

RESUMO

Synthetic molecular robots can execute sophisticated molecular tasks at nanometer resolution. However, a molecular robot capable of controlling cellular behavior remains unexplored. Herein, we report a self-propelled DNA robot operating on the cell membrane to control the migration of a cell. Driven by DNAzyme catalytic activity, the DNA robot could autonomously and stepwise move on the membrane-floating cell-surface receptors in a stochastic manner and simultaneously trigger the receptor-dimerization to activate downstream signaling for cell motility. The cell membrane-associated continuous motion and operation of a DNA robot allowed for the ultrasensitive regulation of MET/AKT signaling and cytoskeleton remodeling to enhance cell migration. Finally, we designed distinct conditional DNA robots to orthogonally manipulate the cell migration in a coculture of mixed cell populations. We have developed a novel strategy to engineer a cell-driving molecular robot, representing a promising avenue for precise cell manipulation with nanoscale resolution.


Assuntos
Membrana Celular/metabolismo , DNA Catalítico/metabolismo , DNA/metabolismo , Células A549 , Membrana Celular/química , Movimento Celular , DNA/química , Humanos
13.
Anal Chem ; 92(22): 15194-15201, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33136382

RESUMO

Neurotransmitters are essential chemical mediators for neuronal communication in variable neuromodulations. However, the progress of neuroscience is hampered by the shortage of suitable sensors to track neurotransmitters with high spatial and temporal resolution. Here, we introduce a self-assembled DNA-nanoprism fluorescent probe capable of nongenetically engineering the cell surface for ultrasensitive imaging of the neurotransmitter release at a single live-cell level. The DNA-nanoprism structure conjugated with three cholesterol tails enables the probe to rapidly and stably anchor on the cell surface within 10 min. The in situ detection of neurotransmitters is achieved by equipping the DNA-nanoprism with an aptamer-based "turn-on" fluorescent sensory module for the transmitter of interest. In a proof-of-concept study, we directly visualized the transient dopamine (DA) release on the cell surface with selective responsivity and high spatiotemporal precision and further explored the dynamic correlation between DA release and calcium influx triggered by high K+. This study provides a robust and sensitive tool for cell-surface-targeted imaging of neuromodulations, which might open up a new avenue to improve the understanding of neurochemistry and advance neuroscience research.


Assuntos
DNA/química , Corantes Fluorescentes/química , Nanoestruturas/química , Neurotransmissores/química , Neurotransmissores/metabolismo , Imagem Óptica/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Dopamina/metabolismo , Humanos , Neurônios/citologia
14.
Anal Chem ; 92(22): 15236-15243, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33140958

RESUMO

Lipid transferase-catalyzed protein lipidation plays critical roles in many physiological processes and it has been an increasingly attractive therapeutic target from cancer to neurodegeneration, while sensitive detection of lipid transferase activity in biological samples remains challenging. Here, we presented an AuNP-based colorimetric method with dual-product synergistically enhanced sensitivity for convenient detection of lipid transferase activity. Homo sapiens N-myristoyltransferase 1 (HsNMT1), a key lipid transferase, was selected as the model. Accordingly, positively charged substrate peptides (Pep) of HsNMT1 can induce the aggregation of AuNPs through disrupting their electrostatic repulsion, while the HsNMT1-catalyzed lipid modification generates aggregated lipidated peptides (C14-Pep) and negatively charged HS-CoA, which will eliminate the disruption and stabilize the AuNPs by the formation of Au-S bonds, respectively. Consequently, charge reversal of the biomolecules and the formation of Au-S bonds synergistically contribute to the stability of AuNPs in the presence of HsNMT1. Therefore, the HsNMT1 activity can be visually detected by the naked eye through the color change of the AuNPs originated from the change in their distance-dependent surface plasmon resonance absorptions. Here, the A520/A610 ratio can sensitively reflect the activity of HsNMT1 in the linear range of 2-75 nM with a low detection limit of 0.56 nM. Moreover, the method was successfully applied for probing the HsNMT1 activities in different cell lysates and inhibitor screening. Furthermore, given the replaceability of the substrate peptide, the proposed assay is promising for universal application to other lipid transferases and exhibits great potential in lipid transferase-targeted drug development.


Assuntos
Aciltransferases/metabolismo , Colorimetria/métodos , Ensaios Enzimáticos/métodos , Limite de Detecção , Ouro/química , Humanos , Nanopartículas Metálicas/química
15.
Chembiochem ; 21(3): 282-293, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31364788

RESUMO

Cell-surface receptors play pivotal roles in the regulation of cell fate. Molecular engineering of cell-surface receptors enables control of cell signaling and manipulation of cell behavior in a user-defined way. Currently, the development of chemical-biological approaches for non-genetic engineering and regulation of membrane receptors is attracting significant interest. Recent research advances in functional nucleic acids and DNA nanotechnology have made it possible to use DNA as a new and promising molecular toolkit for controlling receptor-mediated signaling and cell fates. In this minireview we summarize the advances in the use of DNA nanotechnology for the spatiotemporal regulation of cell receptors and highlight practical applications in manipulating cell functions including cell adhesion, cell-cell contact, cell migration, and cellular immunity. We also provide a perspective on the potential of and challenges facing DNA-based receptor engineering in future applications of cell manipulation and cell-based therapy.


Assuntos
DNA/química , Nanotecnologia , Engenharia de Proteínas , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Animais , Adesão Celular , Comunicação Celular , Movimento Celular , Humanos
16.
Biol Reprod ; 102(6): 1203-1212, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32167535

RESUMO

Formin-like 3 (FMNL3) is a member of the formin-likes (FMNLs), which belong to the formin family. As an F-actin nucleator, FMNL3 is essential for several cellular functions, such as polarity control, invasion, and migration. However, the roles of FMNL3 during oocytes meiosis remain unclear. In this study, we investigated the functions of FMNL3 during mouse oocyte maturation. Our results showed that FMNL3 mainly concentrated in the oocyte cortex and spindle periphery. Depleting FMNL3 led to the failure of polar body extrusion, and we also found large polar bodies in the FMNL3-deleted oocytes, indicating the occurrence of symmetric meiotic division. There was no effect of FMNL3 on spindle organization; however, we observed spindle migration defects at late metaphase I, which might be due to the decreased cytoplasmic actin. Microinjecting Fmnl3-EGFP mRNA into Fmnl3-depleted oocytes significantly rescued these defects. In addition, the results of co-immunoprecipitation and the perturbation of protein expression experiments suggested that FMNL3 interacted with the actin-binding protein FASCIN for the regulation of actin filaments in oocytes. Thus, our results provide the evidence that FMNL3 regulates FASCIN for actin-mediated spindle migration and cytokinesis during mouse oocyte meiosis.


Assuntos
Actinas/metabolismo , Forminas/metabolismo , Forminas/farmacologia , Proteínas dos Microfilamentos/metabolismo , Oócitos/fisiologia , Receptores Odorantes/metabolismo , Fuso Acromático/metabolismo , Actinas/genética , Animais , Citocinese/fisiologia , Feminino , Forminas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Camundongos , Proteínas dos Microfilamentos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Receptores Odorantes/genética
17.
Nano Lett ; 19(4): 2603-2613, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30907088

RESUMO

Optogenetics provides promising tools for the precise control of receptor-mediated cell behaviors in a spatiotemporal manner. Yet, most photoreceptors require extensive genetic manipulation and respond only to ultraviolet or visible light, which are suboptimal for in vivo applications because they do not penetrate thick tissues. Here we report a novel near-infrared light-activated DNA agonist (NIR-DA) nanodevice for nongenetic manipulation of cell signaling and phenotype in deep tissues. This nanodevice is prepared by conjugating a preinactivated DNA agonist onto the gold nanorods (AuNRs). Upon NIR light treatment, the DNA agonist is released through the localized surface plasmon resonance (LSPR)-based photothermal effect of AuNRs and becomes active. The active DNA agonist dimerizes the DNA-modified chimeric or native receptor tyrosine kinase (RTK) on cell surfaces and activates downstream signal transduction in live cells. Such NIR-DA activation of RTK signaling enables the control of cytoskeletal remodeling, cell polarization, and directional migration. Furthermore, we demonstrate that the NIR-DA system can be used in vivo to mediate RTK signaling and skeletal muscle satellite cell migration and myogenesis, which are critical cellular behaviors in the process of skeletal muscle regeneration. Thus, the NIR-DA system offers a powerful and versatile platform for exogenous modulation of deep tissues for purposes such as regenerative medicine.


Assuntos
Materiais Biocompatíveis/farmacologia , Comunicação Celular/efeitos dos fármacos , DNA/genética , Receptores Proteína Tirosina Quinases/genética , Materiais Biocompatíveis/química , Comunicação Celular/efeitos da radiação , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/efeitos da radiação , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/efeitos da radiação , DNA/agonistas , DNA/química , DNA/efeitos dos fármacos , Ouro/química , Humanos , Raios Infravermelhos , Nanotubos/química , Receptores Proteína Tirosina Quinases/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Ressonância de Plasmônio de Superfície
18.
J Cell Physiol ; 234(10): 18513-18523, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912144

RESUMO

Cytoskeleton which includes microtubule and actin filaments plays important roles during mammalian oocyte maturation. In the present study, we showed that protein kinase C mu (PKC mu) was one potential key molecule which affected cytoskeleton dynamics in mouse oocytes. Our results showed that PKC mu expressed and localized at the poles of the spindle during oocyte maturation, and PKC mu expression reduced in the oocytes from 6-month-old mice or 24 hr in vitro culture. We knocked down the expression of PKC mu in oocytes using morpholino injection to explore the relationship between PKC mu and subcellular structure defects. The loss of PKC mu reduced oocyte maturation competence, showing with decreased polar body extrusion rate and increased rate of symmetric division. Further analysis indicated that PKC mu decrease caused the spindle organization defects, and this could be confirmed by the decreased tubulin acetylation level. Moreover, we found that PKC mu affected the phosphorylation level of cofilin for actin assembly, which further affected cytoplasmic actin distribution and spindle positioning. In summary, our data indicated that PKC mu is one key factor for oocyte maturation through its roles on the spindle organization and actin filament distribution.


Assuntos
Citoesqueleto/metabolismo , Meiose , Oócitos/citologia , Oócitos/metabolismo , Proteína Quinase C/metabolismo , Acetilação , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular , Feminino , Camundongos Endogâmicos ICR , Fosforilação , Corpos Polares/metabolismo , Fuso Acromático , Tubulina (Proteína)/metabolismo
19.
J Am Chem Soc ; 141(1): 38-41, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525578

RESUMO

Highly efficient fixation of CO2 for the synthesis of useful organic carbonates has drawn much attention. The design of sustainable Lewis acid-base pairs, which has mainly relied on expensive organic ligands, is the key challenge in the activation of the substrate and CO2 molecule. Here, we report the application of Mott-Schottky type nanohybrids composed of electron-deficient Cu and electron-rich N-doped carbon for CO2 fixation. A ligand-free and additive-free method was used to boost the basicity of the carbon supports and the acidity of Cu by increasing the Schottky barrier at their boundary, mimicking the beneficial function of organic ligands acting as the Lewis acid and base in metal-organic frameworks (MOFs) or polymers and simultaneously avoiding the possible deactivation associated with the necessary stability of a heterogeneous catalyst. The optimal Cu/NC-0.5 catalyst exhibited a remarkably high turnover frequency (TOF) value of 615 h-1 at 80 °C, which is 10 times higher than that of the state-of-the-art metal-based heterogeneous catalysts in the literature.

20.
Mol Hum Reprod ; 25(7): 359-372, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152166

RESUMO

Mammalian oocyte maturation involves a unique asymmetric cell division, in which meiotic spindle formation and actin filament-mediated spindle migration to the oocyte cortex are key processes. Here, we report that the vesicle trafficking regulator, RAB35 GTPase, is involved in regulating cytoskeleton dynamics in mouse oocytes. RAB35 GTPase mainly accumulated at the meiotic spindle periphery and cortex during oocyte meiosis. Depletion of RAB35 by morpholino microinjection led to aberrant polar body extrusion and asymmetric division defects in almost half the treated oocytes. We also found that RAB35 affected SIRT2 and αTAT for tubulin acetylation, which further modulated microtubule stability and meiotic spindle formation. Additionally, we found that RAB35 associated with RHOA in oocytes and modulated the ROCK-cofilin pathway for actin assembly, which further facilitated spindle migration for oocyte asymmetric division. Importantly, microinjection of Myc-Rab35 cRNA into RAB35-depleted oocytes could significantly rescue these defects. In summary, our results suggest that RAB35 GTPase has multiple roles in spindle stability and actin-mediated spindle migration in mouse oocyte meiosis.


Assuntos
Meiose/fisiologia , Oócitos/metabolismo , Fuso Acromático/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Feminino , Meiose/genética , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Fuso Acromático/genética , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA