Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 543
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011967, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271479

RESUMO

Given the serious neurological complications and deaths associated with enterovirus 71 (EV71) infection, there is an urgent need to develop effective antivirals against this viral infection. In this study, we demonstrated that two Cathelicidin-derived peptides, LL-18 and FF-18 were more potent against EV71 infection than the parent peptide LL-37, which is the mature and processed form of Cathelicidin. These peptides could directly bind to the EV71 virus particles, but not to coxsackievirus, indicative of their high specificity. The binding of peptides with the virus surface occupied the viral canyon region in a way that could block virus-receptor interactions and inhibit viral uncoating. In addition, these peptide analogues could also relieve the deleterious effect of EV71 infection in vivo. Therefore, Cathelicidin-derived peptides might be excellent candidates for further development of antivirals to treat EV71 infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Humanos , Catelicidinas/farmacologia , Internalização do Vírus , Antivirais/metabolismo
2.
J Virol ; : e0069524, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254312

RESUMO

Enterovirus 71 (EV71) belongs to the family of Picornaviridae; it could cause a variety of illnesses and pose a great threat to public health worldwide. Currently, there is no specific drug treatment for this virus, and a better understanding of virus-host interaction is crucial for novel antiviral development. Here, we find that the class III phosphatidylinositol 3-kinase, VPS34, is an essential host factor for EV71 infection. VPS34 inhibition with either shRNA or specific chemical inhibitor significantly reduces EV71 infection. Meanwhile, EV71 infection upregulates phosphatidylinositol 3-phosphate (PI3P) production in viral replication organelles (ROs), while the depletion of PI3P by phosphatase overexpression inhibits EV71 infection. In addition, the PI3P-binding protein, double FYVE-containing protein 1 (DFCP1), is also required for an efficient replication of EV71. DFCP1 could interact with viral 2C protein and facilitate viral association with lipid droplets (LDs), which are important lipid sources for viral RO biogenesis. Taken together, these results indicate that EV71 virus exploits the VPS34-PI3P-DFCP1-LDs pathway to promote viral RO formation and viral infection, and they also illuminate novel targets for antiviral development.IMPORTANCEEnterovirus 71 (EV71) is a major pathogen that causes hand-foot-and-mouth disease (HFMD) and other serious complications, which are big threats to children under 5 years old. Unravelling the interactions between virus and the host cells will open new avenues in antiviral research. Here, we found the class III phosphatidylinositol 3-kinase, VPS34, and its effector, double FYVE-containing protein 1 (DFCP1), were essential for EV71 infection, both of which could support EV71 viral replication by enhancing the biogenesis of viral replication organelles (ROs). As DFCP1 localizes to lipid droplets, hijacking of these host factors will enable viral utilization of lipids from LDs for the generation of membrane structures during RO biogenesis. In addition, the VPS34 kinase inhibitor was found to be potent against EV71 infection; therefore, this study also brings up a novel target for future anti-EV71 drug development.

3.
J Virol ; 98(2): e0174923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38189249

RESUMO

Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIß (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIß (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Acetiltransferases N-Terminal , Fosfotransferases (Aceptor do Grupo Álcool) , Criança , Pré-Escolar , Humanos , 1-Fosfatidilinositol 4-Quinase/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antivirais , Coenzima A/metabolismo , Infecções por Coxsackievirus , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Proteínas de Membrana/metabolismo , Acetiltransferases N-Terminal/metabolismo , Biogênese de Organelas , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Replicação Viral/fisiologia
4.
Plant Cell ; 34(5): 1890-1911, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35166333

RESUMO

The unique morphology of grass stomata enables rapid responses to environmental changes. Deciphering the basis for these responses is critical for improving food security. We have developed a planta platform of single-nucleus RNA-sequencing by combined fluorescence-activated nuclei flow sorting, and used it to identify cell types in mature and developing stomata from 33,098 nuclei of the maize epidermis-enriched tissues. Guard cells (GCs) and subsidiary cells (SCs) displayed differential expression of genes, besides those encoding transporters, involved in the abscisic acid, CO2, Ca2+, starch metabolism, and blue light signaling pathways, implicating coordinated signal integration in speedy stomatal responses, and of genes affecting cell wall plasticity, implying a more sophisticated relationship between GCs and SCs in stomatal development and dumbbell-shaped guard cell formation. The trajectory of stomatal development identified in young tissues, and by comparison to the bulk RNA-seq data of the MUTE defective mutant in stomatal development, confirmed known features, and shed light on key participants in stomatal development. Our study provides a valuable, comprehensive, and fundamental foundation for further insights into grass stomatal function.


Assuntos
Estômatos de Plantas , Zea mays , Humanos , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Poaceae/genética , Transcriptoma/genética , Zea mays/genética
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193978

RESUMO

The architectural protein histone-like protein from Escherichia coli strain U93 (HU) is the most abundant bacterial DNA binding protein and highly conserved among bacteria and Apicomplexan parasites. It not only binds to double-stranded DNA (dsDNA) to maintain DNA stability but also, interacts with RNAs to regulate transcription and translation. Importantly, HU is essential to cell viability for many bacteria; hence, it is an important antibiotic target. Here, we report that Gp46 from bacteriophage SPO1 of Bacillus subtilis is an HU inhibitor whose expression prevents nucleoid segregation and causes filamentous morphology and growth defects in bacteria. We determined the solution structure of Gp46 and revealed a striking negatively charged surface. An NMR-derived structural model for the Gp46-HU complex shows that Gp46 occupies the DNA binding motif of the HU and therefore, occludes DNA binding, revealing a distinct strategy for HU inhibition. We identified the key residues responsible for the interaction that are conserved among HUs of bacteria and Apicomplexans, including clinically significant Mycobacterium tuberculosis, Acinetobacter baumannii, and Plasmodium falciparum, and confirm that Gp46 can also interact with these HUs. Our findings provide detailed insight into a mode of HU inhibition that provides a useful foundation for the development of antibacteria and antimalaria drugs.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Bacteriófagos/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Glicoproteínas/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica
6.
J Am Chem Soc ; 146(27): 18396-18406, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936812

RESUMO

Direct site-selective and enantioselective oxyfunctionalization of C(sp3)-H bonds to form alcohols with a general scope, with predictable selectivities, and in preparatively useful yields represents a paradigm shift in the standard logic of synthetic organic chemistry. However, the knowledge of either enzymatic or nonenzymatic asymmetric hydroxylation of tertiary C-H bonds for enantioenriched tertiary alcohol synthesis is sorely lacking. Here, we report a practical manganese-catalyzed enantio-differentiating hydroxylation of tertiary propargylic C-H bonds in acyclic systems, producing a wide range of structurally diverse enantioenriched tertiary propargyl alcohols in high efficiency with extremely efficient chemo- and enantio-discrimination. Other features include the use of C-H substrates as the limiting reagent, noteworthy functional group compatibility, great synthetic utilities, and scalability. The findings serve as a blueprint for the development of metal-catalyzed asymmetric oxidation of challenging substrates.

7.
J Am Chem Soc ; 146(31): 21546-21554, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39048922

RESUMO

Two-dimensional (2D) magnets have attracted significant attention in recent years due to their importance in the research on both fundamental physics and spintronic applications. Here, we report the discovery of a new ternary compound FePd2Te2. It features a layered quasi-2D crystal structure with 1D Fe zigzag chains extending along the b-axis in the cleavage plane. Single crystals of FePd2Te2 with centimeter size could be grown. Density functional theory calculations, mechanical exfoliation, and atomic force microscopy on these crystals reveal that they are 2D materials that can be thinned down to ∼5 nm. Magnetic characterization shows that FePd2Te2 is an easy-plane ferromagnet with TC ∼ 183 K and strong in-plane uniaxial magnetic anisotropy. Magnetoresistance and the anomalous Hall effect demonstrate that ferromagnetism could be maintained in FePd2Te2 flakes with large coercivity. A crystal twinning effect is observed by scanning tunneling microscopy which makes the Fe chains right angle bent in the cleavage plane and creates an intriguing spin texture. Besides, a large electronic specific heat coefficient of up to γ ∼ 32.4 mJ mol-1 K-2 suggests FePd2Te2 is a strongly correlated metal. Our results show that FePd2Te2 is a correlated anisotropic 2D magnet that may attract multidisciplinary research interests.

8.
J Am Chem Soc ; 146(28): 18967-18978, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973592

RESUMO

Platensilin, platensimycin, and platencin are potent inhibitors of ß-ketoacyl-acyl carrier protein synthase (FabF) in the bacterial and mammalian fatty acid synthesis system, presenting promising drug leads for both antibacterial and antidiabetic therapies. Herein, a bioinspired skeleton reconstruction approach is reported, which enables the unified synthesis of these three natural FabF inhibitors and their skeletally diverse analogs, all stemming from a common ent-pimarane core. The synthesis features a diastereoselective biocatalytic reduction and an intermolecular Diels-Alder reaction to prepare the common ent-pimarane core. From this intermediate, stereoselective Mn-catalyzed hydrogen atom-transfer hydrogenation and subsequent Cu-catalyzed carbenoid C-H insertion afford platensilin. Furthermore, the intramolecular Diels-Alder reaction succeeded by regioselective ring opening of the newly formed cyclopropane enables the construction of the bicyclo[3.2.1]-octane and bicyclo[2.2.2]-octane ring systems of platensimycin and platencin, respectively. This skeletal reconstruction approach of the ent-pimarane core facilitates the preparation of analogs bearing different polycyclic scaffolds. Among these analogs, the previously unexplored cyclopropyl analog 47 exhibits improved antibacterial activity (MIC80 = 0.0625 µg/mL) against S. aureus compared to platensimycin.


Assuntos
Adamantano , Aminobenzoatos , Aminofenóis , Anilidas , Compostos Policíclicos , Aminofenóis/química , Aminofenóis/farmacologia , Aminofenóis/síntese química , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Compostos Policíclicos/síntese química , Adamantano/química , Adamantano/farmacologia , Adamantano/síntese química , Adamantano/análogos & derivados , Anilidas/farmacologia , Anilidas/química , Anilidas/síntese química , Aminobenzoatos/farmacologia , Aminobenzoatos/química , Aminobenzoatos/síntese química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Estrutura Molecular , Reação de Cicloadição , Testes de Sensibilidade Microbiana , Estereoisomerismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química
9.
Analyst ; 149(8): 2420-2427, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488061

RESUMO

Antimicrobial resistance has become a major global health threat due to the misuse and overuse of antibiotics. Rapid, affordable, and high-efficiency antimicrobial susceptibility testing (AST) is among the effective means to solve this problem. Herein, we developed a capillary-based centrifugal indicator (CBCI) equipped with an in situ culture of pathogenic bacteria for fast AST. The bacterial incubation and growth were performed by macro-incubation, which seamlessly integrated the capillary indicator. Through simple centrifugation, all the bacterial cells were confined at the nanoliter-level capillary column. The packed capillary column height could linearly reflect the bacterial count, and the minimum inhibitory concentration (MIC) was determined based on the difference in the column height between the drug-added groups and the control group. The AST results could easily be determined by the naked eye or smartphone imaging. Thus, the CBCI realized the combination of macro-bacterial incubation and early micro assessment, which accelerated the phenotypic AST without complex microscopic counting or fluorescent labelling. The whole operation process was simple and easy to use. AST results could be determined for E. coli ATCC strains within 3.5 h, and the output results for clinical samples were consistent with the hospital reports. We expect this AST platform to become a useful tool in limiting antimicrobial resistance, especially in remote/resource-limited areas or in underdeveloped countries.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias
10.
Cell Biol Toxicol ; 40(1): 26, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691186

RESUMO

Copper ionophore NSC319726 has attracted researchers' attention in treating diseases, particularly cancers. However, its potential effects on male reproduction during medication are unclear. This study aimed to determine whether NSC319726 exposure affected the male reproductive system. The reproductive toxicity of NSC319726 was evaluated in male mice following a continuous exposure period of 5 weeks. The result showed that NSC319726 exposure caused testis index reduction, spermatogenesis dysfunction, and architectural damage in the testis and epididymis. The exposure interfered with spermatogonia proliferation, meiosis initiation, sperm count, and sperm morphology. The exposure also disturbed androgen synthesis and blood testis barrier integrity. NSC319726 treatment could elevate the copper ions in the testis to induce cuproptosis in the testis. Copper chelator rescued the elevated copper ions in the testis and partly restored the spermatogenesis dysfunction caused by NSC319726. NSC319726 treatment also decreased the level of retinol dehydrogenase 10 (RDH10), thereby inhibiting the conversion of retinol to retinoic acid, causing the inability to initiate meiosis. Retinoic acid treatment could rescue the meiotic initiation and spermatogenesis while not affecting the intracellular copper ion levels. The study provided an insight into the bio-safety of NSC319726. Retinoic acid could be a potential therapy for spermatogenesis impairment in patients undergoing treatment with NSC319726.


Assuntos
Cobre , Espermatogênese , Testículo , Tretinoína , Masculino , Animais , Espermatogênese/efeitos dos fármacos , Tretinoína/farmacologia , Cobre/toxicidade , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Meiose/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Epididimo/patologia
11.
BMC Infect Dis ; 24(1): 755, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080540

RESUMO

BACKGROUND: HBP, a novel biomarker released from neutrophils, may induce inflammatory responses and exacerbate vascular permeability, representing the pathophysiological characteristics of sepsis and septic shock. However, it remains uncertain whether the combination of HBP with other biomarkers yields enhanced diagnostic capacity for sepsis. We hypothesized that measurements included IL-6·IL-8·HBP, IL-6·IL-8·HBP/ALB and HBP/ALB which based on HBP will improve its diagnostic efficacy and even better than the traditional infection biomarkers. METHODS: Between July 2021 and June 2022, we carried out a comprehensive, multi-center, observational cohort study spanning six leading tertiary hospitals located in Heilongjiang Province, China. Patients were stratified into three categories based on the severity of infection: non-sepsis, sepsis, and septic shock. We collected clinical and laboratory data, along with infection and inflammation biomarkers, for analysis. RESULTS: A total of 195 patients were enrolled. Among the three groups, patients with septic shock (n = 75, 38.5%) had significantly higher baseline levels of HBP, WBC, Lac, CRP, PCT, IL-6, IL-8, and IL-10 compared to non-sepsis patients (n = 43, 22.0%) and sepsis patients (n = 77, 39.5%), with statistically significant differences (p < 0.05) observed for all parameters. When compared to SOFA score and traditional markers of CRP, PCT, IL-6 and IL-8, the combined indexes of IL-6·IL-8·HBP and IL-6·IL-8·HBP/ALB demonstrated significantly improved diagnostic performance for sepsis and septic shock (AUC 0.911 and 0.902 respectively, p < 0.001). CONCLUSIONS: The combined measurements of IL-6·IL-8·HBP and IL-6·IL-8·HBP/ALB can augment the diagnostic capacity of HBP for sepsis, and offer reliable early supplementary indicators to traditional biomarkers for assessing disease severity in patients with infection.


Assuntos
Biomarcadores , Sepse , Humanos , Biomarcadores/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Sepse/diagnóstico , Sepse/sangue , Idoso , Estudos de Coortes , China , Proteínas Sanguíneas/análise , Interleucina-6/sangue , Peptídeos Catiônicos Antimicrobianos/sangue , Choque Séptico/diagnóstico , Choque Séptico/sangue , Interleucina-8/sangue , Adulto
12.
Phytopathology ; 114(8): 1869-1877, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829930

RESUMO

Leaf rust is a widespread foliar wheat disease causing substantial yield losses worldwide. Slow rusting is "adult plant" resistance that significantly slows epidemic development and thereby reduces yield loss. Wheat accession CI 13227 was previously characterized as having slow-rusting resistance. To validate the quantitative trait loci (QTLs) and develop diagnostic markers for slow rusting resistance in CI 13227, a new population of recombinant inbred lines of CI 13227 × Everest was evaluated for latent period, final severity, area under the disease progress curve, and infection type in greenhouses and genotyped using genotyping-by-sequencing. Four QTLs were identified on chromosome arms 2BL, 2DS, 3BS, and 7BL, explaining 6.82 to 28.45% of the phenotypic variance for these traits. Seven kompetitive allele-specific polymorphism markers previously reported to be linked to the QTLs in two other CI 13227 populations were validated. In addition, the previously reported QLr.hwwg-7AL was remapped to 2BL (renamed QLr.hwwg-2BL) after adding new markers in this study. Phenotypic data showed that the recombinant inbred lines harboring two or three of the QTLs had a significantly longer latent period. QLr.hwwg-2DS on 2DS showed a major effect on all rust resistance traits and was finely mapped to a 2.7-Mb interval by two newly developed flanking markers from exome capture. Three disease-resistance genes and two transporter genes were identified as the putative candidates for QLr.hwwg-2DS. The validated QTLs can be used as slow-rusting resistance resources, and the markers developed in this study will be useful for marker-assisted selection.


Assuntos
Basidiomycota , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Triticum , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Basidiomycota/fisiologia , Fenótipo , Mapeamento Cromossômico , Puccinia , Marcadores Genéticos/genética , Genótipo , Cromossomos de Plantas/genética , Alelos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38401088

RESUMO

Background: Lumbar spondylolysis (LS) poses a potential threat, and there is a need to evaluate and compare the effectiveness of direct pars repair techniques. Objective: To assess and compare the clinical and radiographic outcomes of direct pars repair techniques using the pedicle screw hook system (PSHS) and the pedicle screw rod system (PSRS) in young symptomatic patients with lumbar spondylolysis. Methods: A retrospective study was conducted to compare clinical and radiological data in young symptomatic LS patients after surgery. Records of 45 post-surgery LS patients with a minimum 24-month follow-up (January 2014 to June 2019) were reviewed. A total of 26 patients underwent PSHS, and 19 had PSRS. Treatment outcomes were analyzed using the visual analog pain scale (VAS), Oswestry disability index (ODI), MacNab criteria, lumbar fusion status, and Pfirrmann grading standards. Patient baseline characteristics were also compared between the two groups. Results: No disc degeneration was observed in either PSHS or PSRS groups at 24 months postoperatively, according to the Pfirrmann grading scale. The PSRS group outperformed the PSHS group in operative time, intraoperative blood loss, postoperative drainage, length of hospital stays, ODI, VAS values at 3 months postoperatively, and fusion status at 6 months postoperatively. No notable differences were observed in other parameters during the 24-month follow-up period, and no significant surgical complications were recorded. Conclusions: Direct pars repair techniques using PSHS and PSRS yielded satisfactory clinical and radiographic results in young patients with symptomatic LS. PSRS, compared to PSHS, demonstrated greater effectiveness in young individuals with LS and promoted early recovery.

14.
Public Health ; 228: 186-193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387115

RESUMO

OBJECTIVES: China has the largest number of hepatitis C virus (HCV) infection in the world, but current levels of diagnosis and treatment are low. The objective of this study was to assess the cost-effectiveness of various universal HCV screening and treatment strategies in China and inform decisions on health policy. STUDY DESIGN: A cost-effectiveness analytical study. METHODS: We developed a Markov model to investigate cost-effectiveness of different HCV screening and treatment strategies in China. We simulated several screening scenarios for Chinese people aged 18-70 years. We estimated incremental cost-effectiveness ratios (ICERs) of different intervention scenarios compared with status quo. RESULTS: Expanded HCV screening and treatment strategy with prioritisation for high-risk groups (Scenario S5) was the most cost-effective strategy (ICER: USD $11,667.71/quality-adjusted life-year [QALY] gained), which resulted in great reduction in HCV-related diseases and deaths, with a 67.11% reduction in cases of chronic HCV. Universal HCV screening and treatment implementation remains a cost-effective strategy when delayed until 2025 (ICER: USD $17,093.69/QALY), yet the delayed strategy is less effective in reducing HCV-related deaths. CONCLUSIONS: Expanded HCV screening and treatment strategy with prioritisation for high-risk groups is the most cost-effective strategy and has lead to a significant reduction in both HCV morbidity and mortality in China, which would essentially eliminate HCV as a public threat.


Assuntos
Hepatite C Crônica , Programas de Rastreamento , Humanos , Antivirais/uso terapêutico , China/epidemiologia , Análise Custo-Benefício , População do Leste Asiático , Hepacivirus , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
15.
J Virol ; 96(6): e0011922, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35170979

RESUMO

Enterovirus 71 (EV71) is deemed a reemergent pathogen, with recent outbreaks worldwide. EV71 infection causes hand, foot, and mouth disease (HFMD) and has been associated with severe cardiac and central nervous system complications and even death. Viruses need host factors to complete their life cycle; therefore, the identification of the host factors for EV71 infection is pivotal to new antiviral research. Emerging evidence has highlighted the importance of protein acetylation during infection by various human viruses. The endoplasmic reticulum (ER), as the prominent organelle of EV71 replication, also has a unique acetylation regulation mechanism. However, the pathogenesis of EV71 and its relationship with the ER-based acetylation machinery are not fully understood. In this study, we demonstrated for the first time that the ER-resident acetyltransferase N-acetyltransferase 8 (NAT8) is a host factor for EV71 infection. Inhibiting NAT8 with CRISPR or a small compound significantly suppressed EV71 infection in SK-N-SH cells. NAT8 promoted EV71 replication in an acetyltransferase-activity-dependent manner. Additionally, we found that NAT8 facilitates EV71 infection by interacting with EV71 2B, 3AB, and 3C proteins and increasing the stability of these proteins. These results uncovered a novel function of NAT8 and elucidated a new mechanism underlying the regulation of EV71 replication. IMPORTANCE EV71 is one of the most common pathogens causing HFMD in young children, and some patients experience severe or fatal neurological consequences. To ensure efficient replication, the virus must hijack multiple host factors for its own benefit. Here, we show that the ER-resident acetyltransferase NAT8 is a host factor for EV71 infection. EV71 fails to complete its infection in various cells in the absence of NAT8. We further show that NAT8 benefits EV71 replication in an acetyltransferase-activity-dependent manner. Finally, we show that NAT8 facilitates EV71 infection by interacting with EV71 2B, 3AB, and 3C proteins and increasing the stability of these proteins. These results uncovered a novel function of NAT8 in EV71 infection and elucidated a new mechanism underlying the regulation of EV71 replication.


Assuntos
Acetiltransferases , Enterovirus Humano A , Infecções por Enterovirus , Proteínas não Estruturais Virais , Replicação Viral , Acetiltransferases/metabolismo , Enterovirus Humano A/fisiologia , Humanos , Proteínas não Estruturais Virais/metabolismo
16.
J Med Virol ; 95(1): e28212, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36224449

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to public health and has quickly become a global concern. The infection of SARS-CoV-2 begins with the binding of its spike protein to the receptor-angiotensin-converting enzyme 2 (ACE2), which, after a series of conformation changes, results in the fusion of viral-cell membranes and the release of the viral RNA genome into the cytoplasm. In addition, infected host cells can express spike protein on their cell surface, which will interact with ACE2 on neighboring cells, leading to cell membrane fusion and the formation of multinucleated cells or syncytia. Both viral entry and syncytia formation are mediated by spike-ACE2 interaction and share some common mechanisms of membrane fusion. Here in this review, we will summarize our current understanding of spike-mediated membrane fusion, which may shed light on future broad-spectrum antiviral development.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Fusão de Membrana , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Proteica , Internalização do Vírus
17.
Amino Acids ; 55(5): 595-606, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36809562

RESUMO

Ornithine metabolism plays a vital role in tumorigenesis. For cancer cells, ornithine is mainly used as a substrate for ornithine decarboxylase (ODC) for the synthesis of polyamines. The ODC as a key enzyme of polyamine metabolism has become an important target for cancer diagnosis and treatment. To non-invasively detect the levels of ODC expression in malignant tumors, we have synthesized a novel 68Ga-labeled ornithine derivative ([68Ga]Ga-NOTA-Orn). The synthesis time of [68Ga]Ga-NOTA-Orn was about 30 min with a radiochemical yield of 45-50% (uncorrected), and the radiochemical purity was > 98%. [68Ga]Ga-NOTA-Orn was stable in saline and rat serum. Cellular uptake and competitive inhibition assays using DU145 and AR42J cells demonstrated that the transport pathway of [68Ga]Ga-NOTA-Orn was similar to that of L-ornithine, and it could interact with the ODC after transporting into the cell. Biodistribution and micro-positron emission tomography (Micro-PET) imaging studies showed that [68Ga]Ga-NOTA-Orn exhibited rapid tumor uptake and was rapidly excreted through the urinary system. All above results suggested that [68Ga]Ga-NOTA-Orn is a novel amino acid metabolic imaging agent with great potential of tumor diagnosis.


Assuntos
Radioisótopos de Gálio , Neoplasias , Ratos , Animais , Radioisótopos de Gálio/química , Ornitina , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem
18.
Cell ; 133(2): 235-49, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423196

RESUMO

Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.


Assuntos
Estresse Oxidativo , Síndrome do Desconforto Respiratório/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Humanos , Influenza Humana/metabolismo , Interleucina-6/metabolismo , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Fosfolipídeos/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Transdução de Sinais
19.
J Nat Prod ; 86(2): 429-433, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36729068

RESUMO

Territrem F (1), a drimane meroterpenoid bearing a unique borate ring system, was isolated together with its diol precursor territrem B (2) from the fungus Alternaria sp. ZH-15 associated with the soft coral Lobophytum crassum collected in the South China Sea. The structure of the new compound was elucidated by spectroscopic analysis and an X-ray single-crystal diffraction study, representing a new type of boron-containing natural product. Both compounds significantly inhibited spontaneous synchronous Ca2+ oscillations (SCOs) and epileptic discharges induced by 4-aminopyridine, showing the potential for antiepileptic drug research. The 5,9-boronic ester derivative of 2 did not change its SCO inhibitory activity.


Assuntos
Agaricales , Antozoários , Diterpenos , Animais , Estrutura Molecular , Diterpenos/química , Boratos , Alternaria , Antozoários/química
20.
Nucleic Acids Res ; 49(19): 11367-11378, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614154

RESUMO

Bacterial chromosome replication is mainly catalyzed by DNA polymerase III, whose beta subunits enable rapid processive DNA replication. Enabled by the clamp-loading complex, the two beta subunits form a ring-like clamp around DNA and keep the polymerase sliding along. Given the essential role of ß-clamp, its inhibitors have been explored for antibacterial purposes. Similarly, ß-clamp is an ideal target for bacteriophages to shut off host DNA synthesis during host takeover. The Gp168 protein of phage Twort is such an example, which binds to the ß-clamp of Staphylococcus aureus and prevents it from loading onto DNA causing replication arrest. Here, we report a cryo-EM structure of the clamp-Gp168 complex at 3.2-Å resolution. In the structure of the complex, the Gp168 dimer occupies the DNA sliding channel of ß-clamp and blocks its loading onto DNA, which represents a new inhibitory mechanism against ß-clamp function. Interestingly, the key residues responsible for this interaction on the ß-clamp are well conserved among bacteria. We therefore demonstrate that Gp168 is potentially a cross-species ß-clamp inhibitor, as it forms complex with the Bacillus subtilis ß-clamp. Our findings reveal an alternative mechanism for bacteriophages to inhibit ß-clamp and provide a new strategy to combat bacterial drug resistance.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacteriófagos/química , DNA Bacteriano/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Proteínas Virais/química , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , DNA Polimerase III/antagonistas & inibidores , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA