Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(8): 100611, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37391046

RESUMO

Profiling the nucleic acid-binding proteins (NABPs) during aging process is critical to elucidate its roles in biological systems as well as transcriptional and translational regulation. Here, we developed a comprehensive strategy to survey the NABPs of mouse immune organs by using single cell preparation and selective capture technology-based proteomics. Our approach provided a global view of tissue NABPs from different organs under normal physiological conditions with extraction specificity of 70 to 90%. Through quantitative proteomics analysis of mouse spleen and thymus at 1, 4, 12, 24, 48, and 72 weeks, we investigated the molecular features of aging-related NABPs. A total of 2674 proteins were quantified in all six stages, demonstrating distinct and time-specific expression pattern of NABPs. Thymus and spleen exhibited unique aging signatures, and differential proteins and pathways were enriched across the mouse lifespan. Three core modules and 16 hub proteins associated with aging were revealed through weighted gene correlation network analysis. Significant candidates were screened for immunoassay verification, and six hub proteins were confirmed. The integrated strategy pertains the capability to decipher the dynamic functions of NABPs in aging physiology and benefit further mechanism research.


Assuntos
Ácidos Nucleicos , Proteoma , Animais , Camundongos , Proteoma/genética , Envelhecimento/genética , Perfilação da Expressão Gênica
2.
BMC Genomics ; 25(1): 582, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858624

RESUMO

BACKGROUND: Carcass traits are essential economic traits in the commercial pig industry. However, the genetic mechanism of carcass traits is still unclear. In this study, we performed a genome-wide association study (GWAS) based on the specific-locus amplified fragment sequencing (SLAF-seq) to study seven carcass traits on 223 four-way intercross pigs, including dressing percentage (DP), number of ribs (RIB), skin thinkness (ST), carcass straight length (CSL), carcass diagonal length (CDL), loin eye width (LEW), and loin eye thickness (LET). RESULTS: A total of 227,921 high-quality single nucleotide polymorphisms (SNPs) were detected to perform GWAS. A total of 30 SNPs were identified for seven carcass traits using the mixed linear model (MLM) (p < 1.0 × 10- 5), of which 9 SNPs were located in previously reported quantitative trait loci (QTL) regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43 to 16.32%. Furthermore, 11 candidate genes (LYPLAL1, EPC1, MATN2, ZFAT, ZBTB10, ZNF704, INHBA, SMYD3, PAK1, SPTBN2, and ACTN3) were found for carcass traits in pigs. CONCLUSIONS: The GWAS results will improve our understanding of the genetic basis of carcass traits. We hypothesized that the candidate genes associated with these discovered SNPs would offer a biological basis for enhancing the carcass quality of pigs in swine breeding.


Assuntos
Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Suínos/genética , Cruzamentos Genéticos , Carne
3.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35419596

RESUMO

Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.


Assuntos
Neoplasias da Próstata , Microambiente Tumoral , Senescência Celular/genética , Genômica , Humanos , Imunoterapia , Masculino , Neoplasias da Próstata/genética , Microambiente Tumoral/genética
4.
J Exp Bot ; 75(7): 1887-1902, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38079376

RESUMO

Cold stress is a serious threat to global crop production and food security, but plant cold resistance is accompanied by reductions in growth and yield. In this study, we determined that the novel gene BcGSTF10 in non-heading Chinese cabbage [NHCC; Brassica campestris (syn. Brassica rapa) ssp. chinensis] is implicated in resistance to cold stress. Biochemical and genetic analyses demonstrated that BcGSTF10 interacts with BcICE1 to induce C-REPEAT BINDING FACTOR (CBF) genes that enhance freezing tolerance in NHCC and in Arabidopsis. However, BcCBF2 represses BcGSTF10 and the latter promotes growth in NHCC and Arabidopsis. This dual function of BcGSTF10 indicates its pivotal role in balancing cold stress and growth, and this important understanding has the potential to inform the future development of strategies to breed crops that are both climate-resilient and high-yielding.


Assuntos
Arabidopsis , Brassica , Resposta ao Choque Frio , Glutationa Transferase/genética , Melhoramento Vegetal , Brassica/genética , Regulação da Expressão Gênica de Plantas
5.
Plant Dis ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764341

RESUMO

In Henan, strawberry cultivation occurs on approximately 10,000 hectares, with annual production approaching 230,000 tons. In April 2022, a root rot disease with a 10% incidence rate was observed on the strawberry cultivars 'Ningyu' and 'Sweet Charlie' grown in plastic greenhouses (0.7 ha) located in Xingyang (113.39°E, 34.79°N), Henan, China. Disease symptoms included yellowing of the outer mature leaves, stunted growth, and subsequent wilting of the entire plant. The roots developed dark brown spots, which gradually turned necrotic (Figures 1a, 1b). To determine the causal agent, four symptomatic plants (two plants per cultivar) were collected. Twelve symptomatic root tissues (three root tissue samples per plant) were surface sterilized with 75% ethanol and 0.1% mercuric chloride, washed thrice in sterile water, air dried, and then placed on PDA at 25°C for 3 days. Eight pure isolates were obtained by hyphal-tip isolation (Fang 2007). Each colony had a dark olivaceous green to brown, cottony appearance with a round margin, and the reverse side was grey-black near the center (Figure 1c). Conidia were ellipsoidal, aseptate, with rounded ends, and 3.1 to 4.8 µm × 1.0 to 2.5 µm in size (Figure 1d). Chlamydospores were ellipsoidal, pale brown, and 7.9 to 11.9 µm × 7.6 to 10.7 µm in size (Figure 1e). A representative fungus isolate, designated as Z5, was selected for further molecular identification. Genomic DNA was extracted from the mycelia of isolate Z5, and four gene partial regions (ITS, TUB2, RPB2, and LSU) were amplified using the primer pairs ITS1/ITS4, Bt-2a/Bt-2b, RPB2-5F/RPB2-7CR and LROR/LR5, respectively (White et al.1990, O'Donnell et al.1997, Reeb et al. 2004, Rehner and Samuels 1994). PCR products were sequenced and submitted to GenBank with the following accession numbers OQ130480 (ITS), OQ190093 (TUB2), OQ190092 (RPB2), and OQ255570 (LSU). BLASTn search revealed that the ITS, TUB2, RPB2, and LSU gene sequences of isolate Z5 showed 99.42% (513/516 bp), 99.69% (320/321 bp), 100% (1071/1071 bp), and 100% (857/857 bp) identity with those of ex-type S. pogostemonis stain ZHKUCC 21-0001 (Dong et al. 2021), respectively. A phylogenetic tree was constructed showing that Z5 clustered with S. pogostemonis (Figure 2). The isolates in this study were identified as S. pogostemonis based on morphological and molecular evidence. To confirm pathogenicity, five one-month-old 'Ningyu' cultivar strawberry seedlings were planted in sterilized nursery soil mixed with wheat grains (0.5% w/w) coated with Z5 mycelia (Fang 2007). An equal number of strawberry seedlings were placed in pots filled with non-infected potting mix to serve as controls. The seedlings were kept in a greenhouse under a 12 h light/dark photoperiod at 25°C. After two weeks, the inoculated seedlings displayed symptoms such as leaf wilting and root necrosis, similar to those observed in the greenhouses, while the control seedlings showed no symptoms (Figures 1f, 1g). The experiment was performed thrice. The identical fungus was re-isolated from the symptomatic roots and identified as S. pogostemonis based on morphological characteristics and molecular analysis, thus fulfilling Koch's postulates. This is the first report of S. pogostemonis causing root rot on strawberries worldwide. Our findings will contribute to a more comprehensive study on investigating and managing this disease.

6.
Ergonomics ; : 1-22, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651950

RESUMO

Mental load is a major cause of human-induced accidents. In this study, an explosive impact sensitivity experiment was used to induce mental load. A combination of subjective questionnaires and objective prospective time-distance tests were used to judge whether subjects experienced mental load. Four indicators, namely, ß, γ, mean pupil diameter, and fixation time were selected by statistical analysis and PCA for the construction of a mental load assessment model. The study found that the occipital lobe was the most sensitive to mental load, especially ß and γ bands. Lastly, it was found that subjects showed different degrees of mental load for the same mental load induction task. The results of the study are applicable to the evaluation and monitoring of the mental characteristics of workers and provide a scientific basis for adjusting the mental load of workers over time to reduce the rate of accidents and enhance production efficiency.


Mental load is the main cause of human-induced accidents. This study used an explosive impact sensitivity experiment to induce mental load in subjects. We found that the mean pupil diameter and fixation time, as well as the beta and gamma bands in the occipital lobe were most sensitive to mental load.

7.
J Proteome Res ; 22(7): 2364-2376, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37368948

RESUMO

Bombesin receptor subtype-3 (BRS3) is an orphan G-protein coupled receptor (GPCR) that is involved in a variety of pathological and physiological processes, while its biological functions and underlying regulatory mechanisms remain largely unknown. In this study, a quantitative phosphoproteomics approach was employed to comprehensively decipher the signal transductions that occurred upon intracellular BRS3 activation. The lung cancer cell line H1299-BRS3 was treated with MK-5046, an agonist of BRS3, for different durations. Harvested cellular proteins were digested and phosphopeptides were enriched by immobilized titanium (IV) ion affinity chromatography (Ti4+-IMAC) for label-free quantification (LFQ) analysis. A total of 11,938 phosphopeptides were identified, corresponding to 3,430 phosphoproteins and 10,820 phosphosites. Data analysis revealed that 27 phosphopeptides corresponding to six proteins were involved in the Hippo signaling pathway, which was significantly regulated by BRS3 activation. Verification experiments demonstrated that downregulation of the Hippo signaling pathway caused by BRS3 activation could induce the dephosphorylation and nucleus localization of the Yes-associated protein (YAP), and its association with cell migration was further confirmed by kinase inhibition. Our data collectively demonstrate that BRS3 activation contributes to cell migration through downregulation of the Hippo signaling pathway.


Assuntos
Via de Sinalização Hippo , Receptores da Bombesina , Receptores da Bombesina/metabolismo , Fosfopeptídeos , Transdução de Sinais/fisiologia , Movimento Celular , Fosfoproteínas/metabolismo
8.
Cancer Sci ; 114(1): 115-128, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36114822

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2)/KDR plays a critical role in tumor growth, diffusion, and invasion. The amino acid sequence homology of KDR between mouse and human in the VEGF ligand-binding domain was low, thus the WT mice could not be used to evaluate Abs against human KDR, and the lack of a suitable mouse model hindered both basic research and drug developments. Using the CRISPR/Cas9 technique, we successfully inserted different fragments of the human KDR coding sequence into the chromosomal mouse Kdr exon 4 locus to obtain an hKDR humanized mouse that can be used to evaluate the marketed Ab ramucirumab. In addition, the humanized mAb VEGFR-HK19 was developed, and a series of comparative assays with ramucirumab as the benchmark revealed that VEGFR-HK19 has higher affinity and superior antiproliferation activity. Moreover, VEGFR-HK19 selectively inhibited tumor growth in the hKDR mouse model but not in WT mice. The most important binding epitopes of VEGFR2-HK19 are D257, L313, and T315, located in the VEGF binding region. Therefore, the VEGFR2-HK19 Ab inhibits tumor growth by blocking VEGF-induced angiogenesis, inflammation, and promoting apoptosis. To our best knowledge, this novel humanized KDR mouse fills the gaps both in an animal model and the suitable in vivo evaluation method for developing antiangiogenesis therapies in the future, and the newly established humanized Ab is expected to be a drug candidate possibly benefitting tumor patients.


Assuntos
Anticorpos Neutralizantes , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Camundongos , Animais , Anticorpos Neutralizantes/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosforilação , Ligação Proteica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular
9.
Clin Immunol ; 246: 109204, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503156

RESUMO

Formins are evolutionarily conserved genes and profoundly affect cancer progression. This study aims to explore the expressions, prognostic values, and immunological correlations of Formins in cancer. Specific Formins were dysregulated and immuno-biologically correlated in breast cancer (BRCA). Formins showed different expression patterns, namely some were enriched in immune cells while some were enriched in tumor cells. Among all Formins, DIAPH1 was enriched in tumor cells and associated with an inflamed tumor microenvironment (TME). DIAPH1 functioned as an oncogene in BRCA and mediated TGF-ß1-induced epithelial-mesenchymal transformation (EMT) and PD-L1 expression. Moreover, DIAPH1 was overexpressed in most cancers and functioned as a novel pan-cancer immuno-marker, which could predict the response to anti-PD-1/PD-L1 immunotherapy. Overall, DIAPH1 functions as an oncogene and is immunologically correlated, which could be utilized as an alternative biomarker for predicting the immunotherapeutic response.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Forminas , Neoplasias/tratamento farmacológico , Prognóstico , Imunoterapia , Microambiente Tumoral
10.
Cell Mol Life Sci ; 79(1): 72, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032194

RESUMO

Extracellular vesicles (EVs) are important carriers for biomolecules in the microenvironment that greatly promote intercellular and extracellular communications. However, it is unclear whether bombesin receptor-subtype 3 (BRS-3), an orphan G-protein coupled receptor, can be packed into EVs and functionally transferred to recipient cells. In this study, we applied the synthetic agonist and antagonist to activate and inhibit the BRS-3 in HEK293-BRS-3 cells, whose EVs release was BRS-3 activation dependent. The presence of BRS-3 in harvested EVs was further confirmed by an enhanced green fluorescent protein tag. After recipient cells were co-cultured with these EVs, the presence of BRS-3 in the recipient cells was discovered, whose function was experimentally validated. Quantitative proteomics approach was utilized to decipher the proteome of the EVs derived from HEK293-BRS-3 cells after different stimulations. More than 900 proteins were identified, including 51 systematically dysregulated EVs proteins. The Ingenuity Pathway Analysis (IPA) revealed that RhoA signaling pathway was as an essential player for the secretion of EVs. Selective inhibition of RhoA signaling pathway after BRS-3 activation dramatically reversed the increased secretion of EVs. Our data, collectively, demonstrated that EVs contributed to the transfer of functional BRS-3 to the recipient cells, whose secretion was partially regulated by RhoA signaling pathway.


Assuntos
Vesículas Extracelulares/metabolismo , Receptores da Bombesina/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Nanopartículas/química , Proteômica/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem , Proteína rhoA de Ligação ao GTP/metabolismo
11.
J Mol Cell Cardiol ; 162: 43-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34437878

RESUMO

Cardiovascular diseases are a serious threat to human health, especially in the elderly. Vascular aging makes people more susceptible to cardiovascular diseases due to significant dysfunction or senescence of vascular cells and maladaptation of vascular structure and function; moreover, vascular aging is currently viewed as a modifiable cardiovascular risk factor. To emphasize the relationship between senescent cells and vascular aging, we first summarize the roles of senescent vascular cells (endothelial cells, smooth muscle cells and immune cells) in the vascular aging process and inducers that contribute to cellular senescence. Then, we present potential strategies for directly targeting senescent cells (senotherapy) or preventively targeting senescence inducers (senoprevention) to delay vascular aging and the development of age-related vascular diseases. Finally, based on recent research, we note some important questions that still need to be addressed in the future.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Idoso , Envelhecimento , Doenças Cardiovasculares/etiologia , Senescência Celular , Humanos , Miócitos de Músculo Liso
12.
J Proteome Res ; 21(7): 1589-1602, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715216

RESUMO

Aberrant protein N-glycosylation is a cancer hallmark, which has great potential for cancer detection. However, large-scale and in-depth analysis of N-glycosylation remains challenging because of its high heterogeneity, complexity, and low abundance. Human saliva is an attractive diagnostic body fluid, while few efforts explored its N-glycoproteome for lung cancer. Here, we utilized a zwitterionic-hydrophilic interaction chromatography-based strategy to specifically enrich salivary glycopeptides. Through quantitative proteomics analysis, 1492 and 1234 intact N-glycopeptides were confidently identified from pooled saliva samples of 10 subjects in the nonsmall-cell lung cancer group and 10 subjects in the normal control group. Accordingly, 575 and 404 N-glycosites were revealed for the lung cancer group and normal control group. In particular, 154 N-glycosites and 259 site-specific glycoforms were significantly dysregulated in the lung cancer group. Several N-glycosites located at the same glycoprotein and glycans attached to the same N-glycosites were observed with differential expressions, including haptoglobin, Mucin-5B, lactotransferrin, and α-1-acid glycoprotein 1. These N-glycoproteins were mainly related to inflammatory responses, infectious diseases, and cancers. Our study achieved comprehensive characterization of salivary N-glycoproteome, and dysregulated site-specific glycoforms hold promise for noninvasive detection of lung cancer.


Assuntos
Neoplasias Pulmonares , Saliva , Glicopeptídeos/análise , Glicoproteínas/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico , Proteoma/metabolismo , Proteômica , Saliva/química
13.
J Proteome Res ; 21(1): 220-231, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34780180

RESUMO

Cellular nucleic acid-binding proteins (NABPs), namely, DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles in many biological processes. However, extracting NABPs with high efficiency in living cells is challenging, which greatly limited their proteomics analysis and comprehensive characterization. Here, we discovered that titanium (IV) ion-immobilized metal affinity chromatography (Ti4+-IMAC) material could enrich DNA and RNA with high efficiency (96.82 ± 2.67 and 85.75 ± 2.99%, respectively). We therefore developed a Ti4+-IMAC method for the joint extraction of DBPs and RBPs. Through utilizing formaldehyde (FA) cross-linking, DBPs and RBPs were covalently linked to nucleic acids (NAs) and further denatured by organic solvents. After Ti4+-IMAC capture, 2000 proteins were identified in 293T cells, among which 417 DBPs and 999 RBPs were revealed, showing promising selectivity for NABPs. We further applied the Ti4+-IMAC capture method to lung cancer cell lines 95C and 95D, which have different tumor progression abilities. The DNA- and RNA-binding capabilities of many proteins have been dysregulated in 95D. Under our conditions, Ti4+-IMAC can be used as a selective and powerful tool for the comprehensive characterization of both DBPs and RBPs, which might be utilized to study their dynamic interactions with nucleic acids.


Assuntos
Neoplasias Pulmonares , Ácidos Nucleicos , Cromatografia de Afinidade/métodos , Humanos , Fosfopeptídeos/química , Proteômica/métodos , Titânio/química
14.
BMC Genomics ; 23(1): 594, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35971078

RESUMO

BACKGROUND: Carcass backfat thickness (BFT), carcass lean percentage (CLP) and carcass fat percentage (CFP) are important to the commercial pig industry. Nevertheless, the genetic architecture of BFT, CLP and CFP is still elusive. Here, we performed a genome-wide association study (GWAS) based on specific-locus amplified fragment sequencing (SLAF-seq) to analyze seven fatness-related traits, including five BFTs, CLP, and CFP on 223 four-way crossbred pigs. RESULTS: A total of 227, 921 highly consistent single nucleotide polymorphisms (SNPs) evenly distributed throughout the genome were used to perform GWAS. Using the mixed linear model (MLM), a total of 20 SNP loci significantly related to these traits were identified on ten Sus scrofa chromosomes (SSC), of which 10 SNPs were located in previously reported quantitative trait loci (QTL) regions. On SSC7, two SNPs (SSC7:29,503,670 and rs1112937671) for average backfat thickness (ABFT) exceeded 1% and 10% Bonferroni genome-wide significance levels, respectively. These two SNP loci were located within an intron region of the COL21A1 gene, which was a protein-coding gene that played an important role in the porcine backfat deposition by affecting extracellular matrix (ECM) remodeling. In addition, based on the other three significant SNPs on SSC7, five candidate genes, ZNF184, ZNF391, HMGA1, GRM4 and NUDT3 were proposed to influence BFT. On SSC9, two SNPs for backfat thickness at 6-7 ribs (67RBFT) and one SNP for CLP were in the same locus region (19 kb interval). These three SNPs were located in the PGM2L1 gene, which encoded a protein that played an indispensable role in glycogen metabolism, glycolysis and gluconeogenesis as a key enzyme. Finally, one significant SNP on SSC14 for CLP was located within the PLBD2 gene, which participated in the lipid catabolic process. CONCLUSIONS: A total of two regions on SSC7 and SSC9 and eight potential candidate genes were found for fatness-related traits in pigs. The results of this GWAS based on SLAF-seq will greatly advance our understanding of the genetic architecture of BFT, CLP, and CFP traits. These identified SNP loci and candidate genes might serve as a biological basis for improving the important fatness-related traits of pigs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Sus scrofa/genética , Suínos/genética , Tecnologia
15.
Biochem Biophys Res Commun ; 629: 26-33, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36095911

RESUMO

Pancreatic beta cells are insulin-producing cells that are structurally and functionally polarized in the islets of Langerhans. The organization and position of the Golgi complex play a key role in maintaining a polarized cell state, but the factors and molecular mechanisms determining the Golgi polarization of pancreatic beta cells are still unknown. In the current study, using pancreatic beta cell-specific Atg5 knockout mice, we found that Atg5, an essential gene for autophagy, plays a pivotal role in regulating Golgi integrity and polarization by affecting the expression of genes involved in vesicle transport. Deletion of Atg5 led to endoplasmic reticulum (ER) stress and impaired the distribution of proinsulin and insulin secretion of pancreatic beta cells, which further exacerbates diabetes. These results contribute to a comprehensive understanding of autophagy-mediated Golgi polarization and its regulation of the function of pancreatic beta cells.


Assuntos
Células Secretoras de Insulina , Animais , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Complexo de Golgi/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Proinsulina/metabolismo
16.
Expert Rev Proteomics ; 19(4-6): 263-277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36308708

RESUMO

BACKGROUND: Many stage II/III colorectal cancer (CRC) patients may relapse after routine treatments. Aberrant phosphorylation can regulate pathophysiological processes of tumors, and finding characteristic protein phosphorylation is an efficient approach for the prediction of CRC relapse. RESEARCH DESIGN AND METHODS: We compared the tissue proteome and phosphoproteome of stage II/III CRC patients between the relapsed group (n = 5) and the non-relapsed group (n = 5). Phosphopeptides were enriched with Ti4+-IMAC material. We utilized label-free quantification-based proteomics to screen differentially expressed proteins and phosphopeptides between the two groups. Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA) were used for bioinformatics analysis. RESULTS: The immune response of the relapsed group (Z-score -2.229) was relatively poorer than that of the non-relapsed group (Z-score 1.982), while viability of tumor was more activated (Z-score 2.895) in the relapsed group, which might cause increased relapse risk. The phosphorylation degrees of three phosphosites (phosphosite 1362 of TP53BP1, phosphosite 809 of VCL and phosphosite 438 of STK10) might be reliable prognostic biomarkers. CONCLUSIONS: Some promising proteins and phosphopeptides were discovered to predict the relapse risk in postoperative follow-ups.


Assuntos
Neoplasias Colorretais , Fosfopeptídeos , Humanos , Fosfopeptídeos/metabolismo , Proteômica , Neoplasias Colorretais/metabolismo , Proteoma/metabolismo , Fosforilação
17.
Anal Bioanal Chem ; 414(12): 3697-3708, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306568

RESUMO

Extracellular vesicles (EVs) play critical roles in intercellular communications, which contain valuable biomarkers for the detection of cancers. Phosphoproteomics analysis of human saliva EVs (sEVs) can help to discover lung cancer-related candidates. Due to the low abundance of phosphoproteins in sEVs, an efficient, reproducible, and cost-effective strategy is required for their enrichment. Here, we compared the latest phosphopeptide techniques, including TiO2, ZrO2, CaTiO3, and Ti4+-IMAC (immobilized metal affinity chromatography) methods, for phosphopeptide isolation. Our data demonstrated that Ti4+-IMAC was the superior one. By using the optimized Ti4+-IMAC approach, we identified more than 500 sEV phosphopeptides. Quantitative proteomics was employed to comprehensively decipher the sEV phosphoproteome of the normal group (n = 6) and lung cancer group (n = 6). Accordingly, 524 and 333 phosphopeptides were enriched, respectively, which corresponded to 439 and 282 phosphoproteins. In total, 857 unique sEV phosphopeptides corresponding to 721 phosphoproteins were revealed. Among 493 identified phosphosites, 37 were upregulated (> 1.5) and 217 were downregulated (< 0.66) in the cancer group. Our data collectively demonstrated that Ti4+-IMAC is an efficient and reproducible technology for comprehensive analysis of sEV phosphoproteome. Differentially expressed sEV phosphoproteins and phosphosites might be used for the detection of lung cancer non-invasively.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Cromatografia de Afinidade/métodos , Vesículas Extracelulares/química , Humanos , Neoplasias Pulmonares/diagnóstico , Fosfopeptídeos/análise , Fosfoproteínas , Proteoma , Titânio/química
18.
J Nat Prod ; 85(4): 1147-1156, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35255689

RESUMO

In order to improve the potential of celastrol against non-small-cell lung cancer cells, the privileged structure, thiazolidinedione, was introduced into its C-20 carboxylic group with acetylpiperazine as a linker, and the thiazolidinedione-conjugated compounds 10a-10t were prepared. The target compounds were evaluated for their cytotoxic activities against the A549 cell line, and the results showed that most of the compounds 10a-10t displayed improved potency over celastrol, and compound 10b exhibited significant activity against the A549 cell line, with an IC50 value of 0.08 µM, which was 13.8-fold more potent than celastrol (IC50 = 1.10 µM). The mechanistic studies suggested that 10b could induce A549 cell apoptosis, as evidenced by Hoechst 33342 staining and annexin V-FITC/propidium iodide dual staining assays. Western blot analysis suggested that compound 10b could upregulate Bax expression, downregulate Bcl-2 expression, and activate the mitochondria-mediated apoptotic pathway. Furthermore, compound 10b could effectively inhibit tumor growth when tested in an A549 cell xenograft mouse model. Collectively, compound 10b is worthy of further investigation to support the discovery of effective agents against non-small-cell lung cancer.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Animais , Antineoplásicos/química , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias , Estrutura Molecular , Triterpenos Pentacíclicos , Tiazolidinedionas
19.
Ecotoxicol Environ Saf ; 241: 113799, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35772359

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), nitrated-PAHs (NPAHs) and oxygenated-PAHs (OPAHs) are environmental pollutants with adverse effects on human health. The correlation between the concentrations of PAHs, NPAHs and OPAHs in human plasma and the methylation level of mitochondrial DNA (mtDNA) was investigated using data from 110 plasma samples collected in Tianjin, China. The median concentrations of PAHs, NPAHs and OPAHs were 16.0 (IQR: 14.4-20.7) ng/mL, 82.2 (IQR: 63.1-97.6) ng/mL and 49.6 (IQR: 28.6-53.8) ng/mL, and the mean proportions were 13.4%, 56.5% and 30.1%, respectively. Bisulfite-PCR pyrosequencing was used to measure the methylation level of MT-CO1 and tRNA-Leu. The methylation levels of two mitochondrial genes (MT-CO1, tRNA-Leu) including four CpG sites (MT-CO1-P1, MT-CO1-P2, tRNA-Leu-P1 and tRNA-Leu-P2) were 0.67% ± 1.38%, 13.54% ± 2.59%, 7.23% ± 5.35% and 1.64% ± 2.94%, respectively. To the best of our knowledge, this is the first time that significant correlations were found between PAHs and their derivatives exposure and mtDNA methylation levels.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , DNA Mitocondrial/genética , Monitoramento Ambiental , Humanos , Metilação , Nitratos/análise , Óxidos de Nitrogênio/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , RNA de Transferência/análise , Adulto Jovem
20.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897830

RESUMO

The transcription factor WRKY33 is a vital regulator of the biological process of the necrotrophic fungus Botrytis cinerea (B. cinerea). However, its specific regulatory mechanism remains to be further investigated. In non-heading Chinese cabbage (NHCC, Brassica campestris (syn. Brassica rapa) ssp. Chinensis), our previous study showed that BcWRKY33A is induced not only by salt stress, but also by B. cinerea infection. Here, we noticed that BcWRKY33A is expressed in trichomes and confer plant defense resistance. Disease symptoms and qRT-PCR analyses revealed that BcWRKY33A-overexpressing and -silencing lines were less and more severely impaired, respectively, than wild type upon B. cinerea treatment. Meanwhile, the transcripts' abundance of indolic glucosinolates' (IGSs) biosynthetic genes is consistent with plants' B. cinerea tolerance. Identification and expression pattern analysis of BcMYB51s showed that BcMYB51-3 has a similar trend to BcWRKY33A upon B. cinerea infection. Moreover, BcWRKY33A directly binds to the BcMYB51-3 promoter, which was jointly confirmed by Y1H, dual-LUC, and EMSA assays. The importance of MYB51, the homolog of BcMYB51-3, in the BcWRKY33A-mediated B. cinerea resistance was also verified using the TRV-based VIGS system. Overall, our data concludes that BcWRKY33A directly activates the expression of BcMYB51-3 and downstream IGSs' biosynthetic genes, thereby improving the B. cinerea tolerance of NHCC plants.


Assuntos
Brassica , Resistência à Doença , Botrytis/fisiologia , Brassica/genética , Brassica/metabolismo , China , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA