Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810645

RESUMO

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Assuntos
Brassicaceae , Flores , Regulação da Expressão Gênica de Plantas , Brassicaceae/genética , Brassicaceae/fisiologia , Produtos Agrícolas/genética , Flores/genética , Flores/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Fenômenos Fisiológicos Vegetais , Mapeamento Cromossômico , Mutação
2.
Plant Cell ; 36(4): 812-828, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38231860

RESUMO

Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss common challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this fast-developing field of research.


Assuntos
Perfilação da Expressão Gênica , Plantas , Reprodutibilidade dos Testes , Plantas/genética , Estresse Fisiológico/genética , Armazenamento e Recuperação da Informação
3.
Proc Natl Acad Sci U S A ; 121(3): e2319335121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38198526

RESUMO

The phytohormone cytokinin has various roles in plant development, including meristem maintenance, vascular differentiation, leaf senescence, and regeneration. Prior investigations have revealed that cytokinin acts via a phosphorelay similar to the two-component system by which bacteria sense and respond to external stimuli. The eventual targets of this phosphorelay are type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs), containing the conserved N-terminal receiver domain (RD), middle DNA binding domain (DBD), and C-terminal transactivation domain. While it has been established for two decades that the phosphoryl transfer from a specific histidyl residue in ARABIDOPSIS HIS PHOSPHOTRANSFER PROTEINS (AHPs) to an aspartyl residue in the RD of B-ARRs results in a rapid transcriptional response to cytokinin, the underlying molecular basis remains unclear. In this work, we determine the crystal structures of the RD-DBD of ARR1 (ARR1RD-DBD) as well as the ARR1DBD-DNA complex from Arabidopsis. Analyses of the ARR1DBD-DNA complex have revealed the structural basis for sequence-specific recognition of the GAT trinucleotide by ARR1. In particular, comparing the ARR1RD-DBD and ARR1DBD-DNA structures reveals that unphosphorylated ARR1RD-DBD exists in a closed conformation with extensive contacts between the RD and DBD. In vitro and vivo functional assays have further suggested that phosphorylation of the RD weakens its interaction with DBD, subsequently permits the DNA binding capacity of DBD, and promotes the transcriptional activity of ARR1. Our findings thus provide mechanistic insights into phosphorelay activation of gene transcription in response to cytokinin.


Assuntos
Arabidopsis , Citocininas , Ativação Transcricional , Arabidopsis/genética , Reguladores de Crescimento de Plantas , DNA
4.
Proc Natl Acad Sci U S A ; 121(14): e2319288121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527206

RESUMO

Design tactics and mechanistic studies both remain as fundamental challenges during the exploitations of earth-abundant molecular electrocatalysts for CO2 reduction, especially for the rarely studied Cr-based ones. Herein, a quaterpyridyl CrIII catalyst is found to be highly active for CO2 electroreduction to CO with 99.8% Faradaic efficiency in DMF/phenol medium. A nearly one order of magnitude higher turnover frequency (86.6 s-1) over the documented Cr-based catalysts (<10 s-1) can be achieved at an applied overpotential of only 190 mV which is generally 300 mV lower than these precedents. Such a high performance at this low driving force originates from the metal-ligand cooperativity that stabilizes the low-valent intermediates and serves as an efficient electron reservoir. Moreover, a synergy of electrochemistry, spectroelectrochemistry, electron paramagnetic resonance, and quantum chemical calculations allows to characterize the key CrII, CrI, Cr0, and CO-bound Cr0 intermediates as well as to verify the catalytic mechanism.

5.
Plant Cell ; 35(5): 1386-1407, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36748203

RESUMO

Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Folhas de Planta/metabolismo , Meristema/genética , Meristema/metabolismo , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(13): e2221219120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943881

RESUMO

The design of a highly efficient system for CO2 photoreduction fully based on earth-abundant elements presents a challenge, which may be overcome by installing suitable interactions between photosensitizer and catalyst to expedite the intermolecular electron transfer. Herein, we have designed a pyrene-decorated Cu(I) complex with a rare dual emission behavior, aiming at additional π-interaction with a pyrene-appended Co(II) catalyst for visible light-driven CO2-to-CO conversion. The results of 1H NMR titration, time-resolved fluorescence/absorption spectroscopies, quantum chemical simulations, and photocatalytic experiments clearly demonstrate that the dynamic π-π interaction between sensitizer and catalyst is highly advantageous in photocatalysis by accelerating the intermolecular electron transfer rate up to 6.9 × 105 s-1, thus achieving a notable apparent quantum yield of 19% at 425 nm with near-unity selectivity. While comparable to most earth-abundant molecular systems, this value is over three times of the pyrene-free system (6.0%) and far surpassing the benchmarking Ru(II) tris(bipyridine) (0.3%) and Ir(III) tris(2-phenylpyridine) (1.4%) photosensitizers under parallel conditions.

7.
Plant Physiol ; 194(4): 1980-1997, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38124490

RESUMO

Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.


Assuntos
Epigênese Genética , Histonas , Histonas/genética , Histonas/metabolismo , Sinais (Psicologia) , Plantas/genética , Plantas/metabolismo , Desenvolvimento Vegetal/genética
8.
Plant Physiol ; 195(1): 190-212, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38417841

RESUMO

Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.


Assuntos
Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Transdução de Sinais/genética , Adaptação Fisiológica/genética , Genes de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 119(35): e2119267119, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998222

RESUMO

A carbazolide-bis(NHC) NiII catalyst (1; NHC, N-heterocyclic carbene) for selective CO2 photoreduction was designed herein by a one-stone-two-birds strategy. The extended π-conjugation and the strong σ/π electron-donation characteristics (two birds) of the carbazolide fragment (one stone) lead to significantly enhanced activity for photoreduction of CO2 to CO. The turnover number (TON) and turnover frequency (TOF) of 1 were ninefold and eightfold higher than those of the reported pyridinol-bis(NHC) NiII complex at the same catalyst concentration using an identical Ir photosensitizer, respectively, with a selectivity of ∼100%. More importantly, an organic dye was applied to displace the Ir photosensitizer to develop a noble-metal-free photocatalytic system, which maintained excellent performance and obtained an outstanding quantum yield of 11.2%. Detailed investigations combining experimental and computational studies revealed the catalytic mechanism, which highlights the potential of the one-stone-two-birds effect.

10.
J Am Chem Soc ; 146(26): 17773-17783, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888951

RESUMO

The development of efficient, selective, and durable CO2 photoreduction systems presents a long-standing challenge in full aqueous solutions owing to the presence of scarce CO2 and the fierce competition against H2 evolution, which is even more challenging when noble metals are not utilized. Herein, we present the facile decorations of four phosphonic acid groups on a donor-acceptor-type organic dye to obtain a water-soluble photosensitizer (4P-DPAIPN), which succeeds the excellent photophysical and photoredox properties of its prototype, exhibiting long-lived delayed fluorescence (>10 µs) in aqueous solutions. Combining 4P-DPAIPN with a cationic cobalt porphyrin catalyst has accomplished record-high apparent quantum yields of 9.4-17.4% at 450 nm for CO2-to-CO photoconversion among the precedented systems (maximum 13%) in fully aqueous solutions. Remarkable selectivity of 82-93% and turnover number of 2700 for CO production can also be achieved with this noble-metal-free system, outperforming a benchmarking ruthenium photosensitizer and a commercial organic dye under parallel conditions. Such high performances of 4P-DPAIPN can be well maintained under real sunlight. More impressively, no significant decomposition of 4P-DPAIPN was detected during the long-term photocatalysis. Eventually, the photoinduced electron transfer pathways were proposed.

11.
PLoS Biol ; 19(2): e3001044, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529193

RESUMO

Evolutionarily conserved microRNAs (miRNAs) usually have high copy numbers in the genome. The redundant and specific roles of each member of a multimember miRNA gene family are poorly understood. Previous studies have shown that the miR156-SPL-miR172 axis constitutes a signaling cascade in regulating plant developmental transitions. Here, we report the feasibility and utility of CRISPR-Cas9 technology to investigate the functions of all 5 MIR172 family members in Arabidopsis. We show that an Arabidopsis plant devoid of miR172 is viable, although it displays pleiotropic morphological defects. MIR172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching, and floral competence. In particular, we find that the miR156-SPL-miR172 cascade is bifurcated into specific flowering responses by matching pairs of coexpressed SPL and MIR172 genes in different tissues. Our results thus highlight the spatiotemporal changes in gene expression that underlie evolutionary novelties of a miRNA gene family in nature. The expansion of MIR172 genes in the Arabidopsis genome provides molecular substrates for the integration of diverse floral inductive cues, which ensures that plants flower at the optimal time to maximize seed yields.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , MicroRNAs/genética , Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Flores/genética , Flores/crescimento & desenvolvimento , Edição de Genes , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Desenvolvimento Vegetal/genética
12.
Inorg Chem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132844

RESUMO

Three homoleptic Al(III) complexes (Al1-Al3) with different degrees of methylation at the 2-pyridylpyrrolide ligand were systematically tested for their function as photosensitizers (PS) in two types of energy transfer reactions. First, in the generation of reactive singlet oxygen (1O2), and second, in the isomerization of (E)- to (Z)-stilbene. 1O2 was directly evidenced by its characteristic NIR emission at around 1276 nm and indirectly by the reaction with an organic substrate [e.g. 2,5-diphenylfuran (DPF)] using in situ UV/vis spectroscopy. In a previous study, the presence of additional methyl groups was found to be beneficial for the photocatalytic reduction of CO2 to CO, but here Al1 without any methyl groups exhibits superior performance. To rationalize this behavior, a combination of photophysical experiments (absorption, emission and excited state lifetimes) together with photostability measurements and scalar-relativistic time-dependent density functional theory calculations was applied. As a result, Al1 exhibited the highest emission quantum yield (64%), the longest emission lifetime (8.7 ns) and the best photostability under the reaction conditions required for the energy transfer reactions (e.g. in aerated chloroform). Moreover, Al1 provided the highest rate constant (0.043 min-1) for the photocatalytic oxygenation of DPF, outperforming even noble metal-based competitors such as [Ru(bpy)3]2+. Finally, its superior photostability enabled a long-term test (7 h), in which Al1 was successfully recycled seven times, underlining the high potential of this new class of earth-abundant PSs.

13.
Cell ; 138(4): 738-49, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19703399

RESUMO

The FT gene integrates several external and endogenous cues controlling flowering, including information on day length. A complex of the mobile FT protein and the bZIP transcription factor FD in turn has a central role in activating genes that execute the switch from vegetative to reproductive development. Here we reveal that microRNA156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes not only act downstream of FT/FD, but also define a separate endogenous flowering pathway. High levels of miR156 in young plants prevent precocious flowering. A subsequent day length-independent decline in miR156 abundance provides a permissive environment for flowering and is paralleled by a rise in SPL levels. At the shoot apex, FT/FD and SPLs converge on an overlapping set of targets, with SPLs directly activating flower-promoting MADS box genes, providing a molecular substrate for both the redundant activities and the feed-forward action of the miR156/SPL and FT/FD modules in flowering control.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Meristema/crescimento & desenvolvimento , Transdução de Sinais , Transativadores
14.
Cell ; 138(4): 750-9, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19703400

RESUMO

The transition from the juvenile to the adult phase of shoot development in plants is accompanied by changes in vegetative morphology and an increase in reproductive potential. Here, we describe the regulatory mechanism of this transition. We show that miR156 is necessary and sufficient for the expression of the juvenile phase, and regulates the timing of the juvenile-to-adult transition by coordinating the expression of several pathways that control different aspects of this process. miR156 acts by repressing the expression of functionally distinct SPL transcription factors. miR172 acts downstream of miR156 to promote adult epidermal identity. miR156 regulates the expression of miR172 via SPL9 which, redundantly with SPL10, directly promotes the transcription of miR172b. Thus, like the larval-to-adult transition in Caenorhabditis elegans, the juvenile-to-adult transition in Arabidopsis is mediated by sequentially operating miRNAs. miR156 and miR172 are positively regulated by the transcription factors they target, suggesting that negative feedback loops contribute to the stability of the juvenile and adult phases.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , MicroRNAs/genética , Transativadores , Fatores de Transcrição/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750273

RESUMO

What determines the rate at which a multicellular organism matures is a fundamental question in biology. In plants, the decline of miR156 with age serves as an intrinsic, evolutionarily conserved timer for the juvenile-to-adult phase transition. However, the way in which age regulates miR156 abundance is poorly understood. Here, we show that the rate of decline in miR156 is correlated with developmental age rather than chronological age. Mechanistically, we found that cell division in the apical meristem is a trigger for miR156 decline. The transcriptional activity of MIR156 genes is gradually attenuated by the deposition of the repressive histone mark H3K27me3 along with cell division. Our findings thus provide a plausible explanation of why the maturation program of a multicellular organism is unidirectional and irreversible under normal growth conditions and suggest that cell quiescence is the fountain of youth in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Divisão Celular/genética , Meristema/genética , MicroRNAs/genética , Brotos de Planta/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
16.
Phytochem Anal ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037036

RESUMO

INTRODUCTION: Marsdeniae tenacissimae Caulis (MTC), a popular traditional Chinese medicine, has been widely used in the treatment of tumor diseases. Paederiae scandens Caulis (PSC), which is similar in appearance to MTC, is a common counterfeit product. It is difficult for traditional methods to effectively distinguish between MTC and PSC. Therefore, there is an urgent need for a rapid and accurate method to identify MTC and PSC. OBJECTIVES: The aim is to distinguish between MTC and PSC by analyzing the differences in nonvolatile organic compounds (NVOCs), taste, odor, and volatile organic compounds (VOCs). METHODS: Liquid chromatography-mass spectrometry (LC-MS) was utilized to analyze the NVOCs of MTC and PSC. Electronic tongue (E-tongue) and electronic nose (E-nose) were used to analyze their taste and odor respectively. Gas chromatography-ion mobility spectrometry (GC-IMS) was applied to analyze VOCs. Finally, multivariate statistical analyses were conducted to further investigate the differences between MTC and PSC, including principal component analysis, orthogonal partial least squares discriminant analysis, discriminant factor analysis, and soft independent modeling of class analysis. RESULTS: The results of this study indicate that the integrated strategy of LC-MS, E-tongue, E-nose, GC-IMS, and multivariate statistical analysis can be effectively applied to distinguish between MTC and PSC. Using LC-MS, 25 NVOCs were identified in MTC, while 18 NVOCs were identified in PSC. The major compounds in MTC are steroids, while the major compounds in PSC are iridoid glycosides. Similarly, the distinct taste difference between MTC and PSC was precisely revealed by the E-tongue. Specifically, the pronounced bitterness in PSC was proven to stem from iridoid glycosides, whereas the bitterness evident in MTC was intimately tied to steroids. The E-nose detected eight odor components in MTC and six in PSC, respectively. The subsequent statistical analysis uncovered notable differences in their odor profiles. GC-IMS provided a visual representation of the differences in VOCs between MTC and PSC. The results indicated a relatively high relative content of 82 VOCs in MTC, contrasted with 32 VOCs exhibiting a similarly high relative content in PSC. CONCLUSION: In this study, for the first time, the combined use of LC-MS, E-tongue, E-nose, GC-IMS, and multivariate statistical analysis has proven to be an effective method for distinguishing between MTC and PSC from multiple perspectives. This approach provides a valuable reference for the identification of other visually similar traditional Chinese medicines.

17.
Angew Chem Int Ed Engl ; : e202412188, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132954

RESUMO

Photoelectrochemical devices require solid anodes and cathodes for the easy assembling of the whole cell and thus redox catalysts need to be deposited on the electrodes. Typical catalyst deposition involves drop casting, spin coating, doctor blading or related techniques to generate modified electrodes where the active catalyst in contact with the electrolyte is only a very small fraction of the deposited mass. We have developed a methodology where the redox catalyst is deposited at the electrode based on supramolecular interactions, namely CH-π and π-π between the catalyst and the surface. This generates a very well-defined catalysts-surface structure and electroactivity, together with a very large catalytic response. This approach represents a new anchoring strategy that can be applied to catalytic redox reactions in heterogeneous phase and compared to traditional methods involves about 4-5 orders of magnitude less mass deposition to achieve comparable activity and with very well-behaved electroactivity and stability.

18.
Angew Chem Int Ed Engl ; 63(21): e202401344, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38422378

RESUMO

The development of high-performance photocatalytic systems for CO2 reduction is appealing to address energy and environmental issues, while it is challenging to avoid using toxic metals and organic sacrificial reagents. We here immobilize a family of cobalt phthalocyanine catalysts on Pb-free halide perovskite Cs2AgBiBr6 nanosheets with delicate control on the anchors of the cobalt catalysts. Among them, the molecular hybrid photocatalyst assembled by carboxyl anchors achieves the optimal performance with an electron consumption rate of 300±13 µmol g-1 h-1 for visible-light-driven CO2-to-CO conversion coupled with water oxidation to O2, over 8 times of the unmodified Cs2AgBiBr6 (36±8 µmol g-1 h-1), also far surpassing the documented systems (<150 µmol g-1 h-1). Besides the improved intrinsic activity, electrochemical, computational, ex-/in situ X-ray photoelectron and X-ray absorption spectroscopic results indicate that the electrons photogenerated at the Bi atoms of Cs2AgBiBr6 can be directionally transferred to the cobalt catalyst via the carboxyl anchors which strongly bind to the Bi atoms, substantially facilitating the interfacial electron transfer kinetics and thereby the photocatalysis.

19.
J Am Chem Soc ; 145(1): 676-688, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538810

RESUMO

Exploiting noble-metal-free systems for high-performance photocatalytic CO2 reduction still presents a key challenge, partially due to the long-standing difficulties in developing potent and durable earth-abundant photosensitizers. Therefore, based on the very cheap aluminum metal, we have deployed a systematic series of homoleptic Al(III) photosensitizers featuring 2-pyridylpyrrolide ligands for CO2 photoreduction. The combined studies of steady-state and time-resolved spectroscopy as well as quantum chemical calculations demonstrate that in anerobic CH3CN solutions at room temperature, visible-light excitation of the Al(III) photosensitizers leads to an efficient population of singlet excited states with nanosecond-scale lifetimes and notable emission quantum yields (10-40%). The results of transient absorption spectroscopy further identified the presence of emissive singlet and unexpectedly nonemissive triplet excited states. More importantly, the introduction of methyl groups at the pyrrolide rings can greatly improve the visible-light absorption, reducing power, and durability of the Al(III) photosensitizers. With triethanolamine, BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole), and an Fe(II)-quaterpyridine catalyst, the most methylated Al(III) photosensitizer achieves an apparent quantum efficiency of 2.8% at 450 nm for selective (>99%) CO2-to-CO conversion, which is nearly 28 times that of the unmethylated one (0.1%) under identical conditions. The optimal system realizes a maximum turnover number of 10250 and higher robustness than the systems with Ru(II) and Cu(I) benchmark photosensitizers. Quenching experiments using fluorescence spectroscopy elucidate that the photoinduced electron transfer in the Al(III)-sensitized system follows a reductive quenching pathway. The remarkable tunability and cost efficiency of these Al(III) photosensitizers should allow them as promising components in noble-metal-free systems for solar fuel conversion.

20.
EMBO J ; 38(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842098

RESUMO

Heteroblasty refers to a phenomenon that a plant produces morphologically or functionally different lateral organs in an age-dependent manner. In the model plant Arabidopsis thaliana, the production of trichomes (epidermal leaf hairs) on the abaxial (lower) side of leaves is a heteroblastic mark for the juvenile-to-adult transition. Here, we show that the heteroblastic development of abaxial trichomes is regulated by a spatiotemporally regulated complex comprising the leaf abaxial fate determinant (KAN1) and the developmental timer (miR172-targeted AP2-like proteins). We provide evidence that a short-distance chromatin loop brings the downstream enhancer element into close association with the promoter elements of GL1, which encodes a MYB transcription factor essential for trichome initiation. During juvenile phase, the KAN1-AP2 repressive complex binds to the downstream sequence of GL1 and represses its expression through chromatin looping. As plants age, the gradual reduction in AP2-like protein levels leads to decreased amount of the KAN1-AP2 complex, thereby licensing GL1 expression and the abaxial trichome initiation. Our results thus reveal a novel molecular mechanism by which a heteroblastic trait is governed by integrating age and leaf polarity cue in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Análise Espaço-Temporal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA