Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 33, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478174

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary fibrosis disease that is fatal. Mesenchymal stem cells (MSCs)-secreted exosomes (exos) have been linked to improving PF. Moreover, exosomal microRNAs (miRs) can control the growth of numerous diseases, including lung disorders. Our bioinformatics analysis showed that miR-30b was downregulated in tissue samples from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplantation. This suggests that miR-30b plays an important role in both the pathogenesis and treatment of IPF. Herein, this research was designed to ascertain the mechanism of MSCs-exos-packaged miR-30b in alleviating PF. The serum was harvested from idiopathic PF (IPF) patients with interstitial pneumonia caused by dermatomyositis and the MLE12 lung epithelial cell fibrosis model was built with TGF-ß1 (10 ng/mL), followed by miR-30b expression determination. TGF-ß1-stimulated MLE12 cells were co-incubated with exos from MSCs with or without Spred2 or Runx1 overexpression, followed by measurement of cell viability and apoptosis. After establishing the IPF mouse model with bleomycin and injecting exos and/or silencing and overexpressing adenovirus vectors, fibrosis evaluation was conducted. In mice and cells, the expression of TGF-ß1, TNF-α, and IL-1ß was tested via ELISA, and the levels of E-cad, ZO-1, α-SMA, and collagen type I via western blot analysis. The promoters of miR-30b, Runx1, and Spred2 were investigated. miR-30b was downregulated in the serum of IPF patients and TGF-ß1-stimulated MLE12 cells. Mechanistically, miR-30b inhibited Spred2 transcription by negatively targeting Runx1. MSCs-exos or MSCs-exo-miR-30b decreased the apoptosis, inflammation, and fibrosis while increasing their viability in TGF-ß1-stimulated MLE12 cells, which was annulled by overexpressing Runx1 or Spred2. Exo-miR-30b decreased Runx1 expression to downregulate Spred2, reducing fibrosis and inflammation in IPF mice. Our results indicated that MSCs-exos-encapsulated miR-30b had a potential function to inhibit PF and part of its function may be achieved by targeting RUNX1 to reduce the Spred2 transcription level. Moreover, this work offered evidence and therapeutic targets for therapeutic strategies for managing clinical PF in patients.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Exossomos/genética , Exossomos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Repressoras/metabolismo
2.
Glob Chang Biol ; 30(3): e17234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469998

RESUMO

Rapid biodiversity losses under global climate change threaten forest ecosystem functions. However, our understanding of the patterns and drivers of multiple ecosystem functions across biodiversity gradients remains equivocal. To address this important knowledge gap, we measured simultaneous responses of multiple ecosystem functions (nutrient cycling, soil carbon stocks, organic matter decomposition, plant productivity) to a tree species richness gradient of 1, 4, 8, 16, and 32 species in a young subtropical forest. We found that tree species richness had negligible effects on nutrient cycling, organic matter decomposition, and plant productivity, but soil carbon stocks and ecosystem multifunctionality significantly increased with tree species richness. Linear mixed-effect models showed that soil organisms, particularly arbuscular mycorrhizal fungi (AMF) and soil nematodes, elicited the greatest relative effects on ecosystem multifunctionality. Structural equation models revealed indirect effects of tree species richness on ecosystem multifunctionality mediated by trophic interactions in soil micro-food webs. Specifically, we found a significant negative effect of gram-positive bacteria on soil nematode abundance (a top-down effect), and a significant positive effect of AMF biomass on soil nematode abundance (a bottom-up effect). Overall, our study emphasizes the significance of a multitrophic perspective in elucidating biodiversity-multifunctionality relationships and highlights the conservation of functioning soil micro-food webs to maintain multiple ecosystem functions.


Assuntos
Ecossistema , Micorrizas , Cadeia Alimentar , Árvores , Solo/química , Biodiversidade , Plantas , Carbono
3.
Toxicol Ind Health ; 40(6): 312-322, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590048

RESUMO

Previous epidemiologic research has shown that phthalate exposure in pregnant women is related to adverse birth outcomes in a sex-specific manner. However, the biological mechanism of phthalate exposure that causes these birth outcomes remains poorly defined. In this research, we investigated the association between phthalate exposure and placental oxidative stress in a large population-based cohort study, aiming to initially explore the relationship between phthalate exposure and gene expression in placental oxidative stress in a sex-specific manner. Quantitative PCR was performed to measure the expression of placental inflammatory mRNAs (HO-1, HIF1α, and GRP78) in 2469 placentae. The multiple linear regression models were used to investigate the associations between mRNA and urinary phthalate monoesters. Phthalate metabolites monomethyl phthalate (MMP) and mono-n-butyl phthalate (MBP) were positively correlated with higher HIF1α expression in placentae of male fetuses (p < .05). Mono-benzyl phthalate (MBzP) increased the expression of HO-1, HIF1α, and GRP78 in placentae of male fetuses, and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) up-regulated the expression of HIF1α and GRP78. Additionally, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively correlated with HO-1, HIF1α, and GRP78 in placentae of female fetuses. Maternal phthalate exposure was associated with oxidative stress variations in placental tissues. The associations were closer in the placentas of male fetuses than in that of female ones. The placenta oxidative stress is worth further investigation as a potential mediator of maternal exposure-induced disease risk in children.


Assuntos
Biomarcadores , Chaperona BiP do Retículo Endoplasmático , Exposição Materna , Estresse Oxidativo , Ácidos Ftálicos , Placenta , Humanos , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/urina , Feminino , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Masculino , Placenta/efeitos dos fármacos , Placenta/metabolismo , Biomarcadores/urina , Estudos Prospectivos , Adulto , Exposição Materna/efeitos adversos , Fatores Sexuais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Estudos de Coortes
4.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732935

RESUMO

A position identification system for wandering elderly people uses BLE to transmit ID information. The objective of this study is to make the BLE module batteryless using a piezoelectric element. The piezoelectric element is mounted on the sole of a shoe, and when pressure is applied to the piezoelectric element by walking, a voltage is generated between both electrodes of the piezoelectric element. This voltage is used to store the necessary power as a battery to operate the BLE module. In this paper, we provide a step-by-step design approach using piezoelectric elements attached to a shoe to power an actual BLE module. We derive an equivalent circuit for the piezoelectric element under walking conditions and, through circuit simulation and actual measurements, clarify the amount of time required to charge the voltage to drive the BLE, demonstrating the possibility of a batteryless BLE module for use in locating a wanderer while they are walking.

5.
Glob Chang Biol ; 29(6): 1618-1627, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36458513

RESUMO

The response of soil biotas to climate change has the potential to regulate multiple ecosystem functions. However, it is still challenging to accurately predict how multiple climate change factors will affect multiple ecosystem functions. Here, we assessed the short-term responses of agroecosystem multifunctionality to a factorial combination of elevated CO2 (+200 ppm) and O3 (+40 ppb) and identified the key soil biotas (i.e., bacteria, fungi, protists, and nematodes) concerning the changes in the multiple ecosystem functions for two rice varieties (Japonica, Nanjing 5055 vs. Wuyujing 3). We provided strong evidence that combined treatment rather than individual treatments of short-term elevated CO2 and O3 significantly increased the agroecosystem multifunctionality index by 32.3% in the Wuyujing 3 variety, but not in the Nanjing 5055 variety. Soil biotas exhibited an important role in regulating multifunctionality under short-term elevated CO2 and O3 , with soil nematode abundances better explaining the changes in ecosystem multifunctionality than soil biota diversity. Furthermore, the higher trophic groups of nematodes, omnivores-predators served as the principal predictor of agroecosystem multifunctionality. These results provide unprecedented new evidence that short-term elevated CO2 and O3 can potentially affect agroecosystem multifunctionality through soil nematode abundances, especially omnivores-predators. Our study demonstrates that high trophic groups were specifically beneficial for regulating multiple ecosystem functions and highlights the importance of soil nematode communities for the maintenance of agroecosystem functions and health under climate change in the future.


Assuntos
Nematoides , Solo , Animais , Ecossistema , Dióxido de Carbono/análise , Bactérias , Microbiologia do Solo
6.
Microb Ecol ; 86(2): 1096-1106, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36258041

RESUMO

Global climate change is characterized by altered global atmospheric composition, including elevated CO2 and O3, with important consequences on soil fungal communities. However, the function and community composition of soil fungi in response to elevated CO2 together with elevated O3 in paddy soils remain largely unknown. Here we used twelve open-top chamber facilities (OTCs) to evaluate the interactive effect of CO2 (+ 200 ppm) and O3 (+ 40 ppb) on the diversity, gene abundance, community structure, and functional composition of soil fungi during the growing seasons of two rice cultivars (Japonica, Wuyujing 3 vs. Nangeng 5055) in a Chinese paddy soil. Elevated CO2 and O3 showed no individual or combined effect on the gene abundance or relative abundance of soil fungi, but increased structural complexity of soil fungal communities, indicating that elevated CO2 and/or O3 promoted the competition of species-species interactions. When averaged both cultivars, elevated CO2 showed no individual effect on the diversity or abundance of functional guilds of soil fungi. By contrast, elevated O3 significantly reduced the relative abundance and diversity of symbiotrophic fungi by an average of 47.2% and 39.1%, respectively. Notably, elevated O3 exerts stronger effects on the functional processes of fungal communities than elevated CO2. The structural equation model revealed that elevated CO2 and/or O3 indirectly affected the functional composition of soil fungi through community structure and diversity of soil fungi. Root C/N and soil environmental parameters were identified as the top direct predictors for the community structure of soil fungi. Furthermore, significant correlations were identified between saprotrophic fungi and root biomass, symbiotrophic fungi and root carbon, the pathotroph-symbiotroph and soil pH, as well as pathotroph-saprotroph-symbiotroph and soil microbial biomass carbon. These results suggest that climatic factors substantially affected the functional processes of soil fungal, and threatened soil function and food production, highlighting the detrimental impacts of high O3 on the function composition of soil biota.


Assuntos
Ozônio , Solo , Dióxido de Carbono , Biomassa , Fungos/genética , Carbono , Microbiologia do Solo , Ozônio/farmacologia
7.
J Environ Manage ; 326(Pt A): 116656, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375434

RESUMO

Global atmospheric changes are characterized by increases in carbon dioxide (CO2) and ozone (O3) concentrations, with important consequences for the soil microbial community. However, the influences of CO2 and O3 enrichment on the biomass, diversity, composition, and functioning of the soil bacterial community remain unclear. We investigated the effects of short-term factorial combinations of CO2 (by 200 ppm) and O3 (by 40 ppb) enrichment on the dynamics of soil bacterial community in paddy soils with two rice varieties (Japonica, Nangeng 5055 (NG5055) vs. Wuyujing 3 (WYJ3)) in an open top chamber facility. When averaged both varieties, CO2 and O3 enrichment showed no individual or combined effect on the abundance or diversity of soil bacterial community. Similarly, CO2 enrichment did not exert any significant effect on the relative abundance of bacterial phyla. However, O3 enrichment significantly reduced the relative abundance of Myxococcota phylum by a mean of 37.5%, which negatively correlated to root N content. Compared to ambient conditions, soil bacterial community composition was separated by CO2 enrichment in NG5055, and by both CO2 and O3 enrichment in WYJ3, with root N content identified as the most influential factor. These results indicated that root N was the top direct predictor for the community composition of soil bacteria. The COG (cluster of orthologous groups) protein of cell motility was significantly reduced by 5.8% under CO2 enrichment, and the COG protein of cytoskeleton was significantly decreased by 14.7% under O3 enrichment. Furthermore, the co-occurrence network analysis indicated that both CO2 and O3 enrichment decreased the network complexity of the soil bacterial community. Overall, our results highlight that continuous CO2 and O3 enrichment would potentially damage the health of paddy soils through adverse impacts on the associations and functional composition of soil microbial communities.


Assuntos
Ozônio , Ozônio/farmacologia , Dióxido de Carbono/farmacologia , Solo , Biomassa , Microbiologia do Solo , Bactérias
8.
J Environ Manage ; 343: 118274, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247543

RESUMO

The underlying mechanisms of the interactions between bacterial communities and tree species are still unknown, primarily attributed to a focus on the soil system while ignoring the leaf phyllosphere, which is a complex and diverse ecosystem that supports microbial diversity in the forest ecosystem. To gain insights into the mechanisms, the effects of seven common subtropical tree species, involving Pinus massoniana Lamb., Mytilaria laosensis Lecomte., Ilex chinensis Sims., Michelia macclurei Dandy., Liquidambar formosana Hance., Quercus acutissima Carruth., and Betula luminifera H.Winkler on the bacterial communities were investigated in the leaf phyllosphere and soil systems. We found that the bacterial community was dominated by Proteobacteria in the leaf phyllosphere (63.2-84.7%), and was dominated by Proteobacteria (34.3-45.0%) and Acidobacteria (32.5-40.6%) in soil. Mycorrhizal types and leaf phenology had no apparent effects on the bacterial abundance in the bacterial diversity in the leaf phyllosphere and soil. The bacterial community composition was greatly influenced by tree species in the leaf phyllosphere rather than in soil, with soil parameters (soil pH and C/N) and litter N identified as the most important factors. Ectomycorrhizal trees exerted positive effects on the complexity of the bacterial community at the expense of decreasing the robustness of the soil bacterial community, potentially threatening ecosystem stability. Evergreen trees decreased the network robustness of bacterial community by 21.9% higher than this of deciduous trees in the leaf phyllosphere. Similarly, evergreen trees decreased soil bacterial abundance by 50.8% and network robustness by 8.0% compared to deciduous trees, indicating the adverse impacts of leaf phenology on the bacterial stability in both leaf and soil. Overall, our results highlight the need for studies of leaf-associated bacteria to comprehensively understand the potential effects of tree species on microbial diversity and stability in subtropical forests.


Assuntos
Ecossistema , Árvores , Solo/química , Biodiversidade , Florestas , Bactérias , Folhas de Planta , Microbiologia do Solo
9.
Environ Geochem Health ; 45(5): 1951-1974, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35751763

RESUMO

This cohort study sought to investigate the effects of phthalates exposure during pregnancy on offspring asthma and its association with placental stress and inflammatory factor mRNA expression levels. A total of 3474 pregnant women from the China Ma'anshan birth cohort participated in this study. Seven phthalate metabolites were detected in urine samples during pregnancy by solid phase extraction-high-performance liquid chromatography tandem mass spectrometry. Placenta stress and inflammation mRNA expression were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Early pregnancy may be the critical period when phthalates exposure increases the risk of asthma in infants and young children, and there is a certain gender difference in the risk of asthma in infants and young children. Moreover, through the placenta stress and inflammatory factor associated with infant asthma found anti-inflammatory factor of interleukin-10 (IL-10) mRNA expression will reduce the risk of 36-month-old male infant asthma. The expression of interleukin-4(IL-4) and macrophage (M2) biomarker cluster of differentiation 206(CD206) mRNA reduced the risk of asthma in 18-month-old female infants. Placental stress and inflammatory response were analyzed using mediating effects. Tumor necrosis factor-α (TNFα) showed a complete mediating effect between mono-benzyl phthalate (MBzP) exposure in early pregnancy and asthma in 12-month-old males, and IL-10 also showed a complete mediating effect between mono-n-butyl phthalate (MBP) exposure in early and late pregnancy and asthma in 36-month-old males. In summary, exposure to phthalates during pregnancy may contribute to the development of asthma in infants, which may be associated with placental stress and inflammation.


Assuntos
Asma , Poluentes Ambientais , Ácidos Ftálicos , Criança , Humanos , Masculino , Feminino , Gravidez , Lactente , Pré-Escolar , Estudos de Coortes , Interleucina-10 , Placenta/metabolismo , Ácidos Ftálicos/toxicidade , Asma/induzido quimicamente , Asma/epidemiologia , Inflamação , RNA Mensageiro , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Ambientais/análise
10.
Brain Behav Immun ; 104: 110-121, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661681

RESUMO

BACKGROUND: Placental inflammation may contribute to brain abnormalities and childhood neuropsychiatric disorders, but limited knowledge is available on the association of placental inflammatory cytokine levels and offspring's behavioral development. This study aimed to examine the sex-specific association between placental inflammatory cytokine mRNA expression and preschoolers' behavioral development. METHODS: 3474 pregnant women were recruited as the initial study population in the Ma'anshan birth cohort (MABC) study. Placentas (n = 2519) were collected during childbirth, and the mRNA expression of IL-8, IL-1ß, CRP, TNF-α, IL-6, IL-10, and IL-4 was assessed. The Child Behavior Checklist 1.5-5 (CBCL 1.5-5) was used to assess children's behavioral development at 4 years old. A T-score ≥ 60 on summary scales or a score ≥ 65 on syndrome scales was regarded as the borderline clinical range. Multiple linear regression models and binary logistic regression models were applied to explore the sex-specific associations between placental inflammatory cytokines mRNA transcript levels and preschoolers' behavioral development. RESULTS: Sex-specific associations between placental inflammatory cytokines mRNA expression and preschoolers' behavioral development were observed. There was a positive association between IL-8 and CBCL scores for boys on anxious/depressed problems, aggressive behaviors, externalizing problems and total problems. Logistic regression models showed that high levels of IL-8 were associated with a higher risk of girls' emotionally reactive problems and sleep problems compared to low/medium levels. High TNF-α was correlated with increased sleep problem scores in boys, and medium TNF-α (vs. low levels) was associated with an increased risk of girls' externalizing problems. Medium levels of CRP, IL-1ß, and IL-6 were found to be associated with a decreased risk of girls' behavioral problems compared to low/high levels. For anti-inflammatory cytokines, medium IL-10 and IL-4 (vs. low levels) were observed to be associated with a lower risk of internalizing problems in boys and externalizing problems in girls, respectively. High IL-10 was correlated with decreased attention problem scores in boys. CONCLUSION: This study indicates that placental inflammatory cytokine mRNA expression of IL-8, CRP, TNF-α, IL-1ß, IL-4 and IL-10 may be associated with preschoolers' behavioral development in a sex-specific manner.

11.
Acta Pharmacol Sin ; 43(2): 316-329, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33850278

RESUMO

Hepatic stellate cells (HSCs) play an important role in the initiation and development of liver fibrogenesis, and abnormal glucose metabolism is increasingly being considered a crucial factor controlling phenotypic transformation in HSCs. However, the role of the factors affecting glycolysis in HSCs in the experimental models of liver fibrosis has not been completely elucidated. In this study, we showed that glycolysis was significantly enhanced, while the expression of brain and muscle arnt-like protein-1 (Bmal1) was downregulated in fibrotic liver tissues of mice, primary HSCs, and transforming growth factor-ß1 (TGF-ß1)-induced LX2 cells. Overexpression of Bmal1 in TGF-ß1-induced LX2 cells blocked glycolysis and inhibited the proliferation and phenotypic transformation of activated HSCs. We further confirmed the protective effect of Bmal1 in liver fibrosis by overexpressing Bmal1 from hepatic adeno-associated virus 8 in mice. In addition, we also showed that the regulation of glycolysis by Bmal1 is mediated by the isocitrate dehydrogenase 1/α-ketoglutarate (IDH1/α-KG) pathway. Collectively, our results indicated that a novel Bmal1-IDH1/α-KG axis may be involved in regulating glycolysis of activated HSCs and might hence be used as a therapeutic target for alleviating liver fibrosis.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Glicólise , Células Estreladas do Fígado/metabolismo , Isocitrato Desidrogenase/metabolismo , Cirrose Hepática/metabolismo , Fatores de Transcrição ARNTL/fisiologia , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo , Células Estreladas do Fígado/patologia , Cirrose Hepática/fisiopatologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL
12.
Bioelectromagnetics ; 43(4): 218-224, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35476263

RESUMO

Radiofrequency radiation (RFR) was classified as a "possible" human carcinogen in 2011, which caused great public concern. A carcinogenicity study by the National Toxicology Program (NTP) found Code Division Multiple Access-and Global System for Mobile Communications-modulated mobile phone RFR to be carcinogenic to the brain and heart of male rats. As part of an investigation of mobile phone carcinogenesis, and to verify the NTP study results, a 5-year collaborative animal project was started in Korea and Japan in 2019. An international animal study of this type has two prerequisites: use of the same study protocol and the same RF-exposure system. This article discusses our experience in the design of this global study on radiofrequency electromagnetic fields (RF-EMFs).© 2022 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Assuntos
Telefone Celular , Ondas de Rádio , Animais , Encéfalo , Carcinogênese , Campos Eletromagnéticos , Masculino , Ratos
13.
Genomics ; 113(1 Pt 2): 637-646, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007397

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that are involved in mammary gland development and lactation in livestock. Little is known about the roles of miRNAs in ovine mammary gland development, hence in this study the expression profiles of miRNAs of the mammary gland tissues of ewes at peak-lactation and during the non-lactating period were investigated using RNA sequencing. A total of 147 mature miRNAs were expressed in the two periods. Compared with peak-lactation, eight miRNAs in the non-lactating ewe mammary gland were significantly up-regulated, whereas fifteen miRNAs were down-regulated. A KEGG analysis revealed that the target genes of the up-regulated miRNAs were significantly enriched in lysosome, Wnt and MAPK signaling pathways, while the target genes of down-regulated miRNAs were significantly enriched in the PI3K-Akt signaling pathway, protein processing in endoplasmic reticulum and axon guidance. These results suggest that further study of the differentially expressed miRNAs could provide a better understanding of the molecular mechanisms of mammary development and lactation in sheep.


Assuntos
Lactação/genética , MicroRNAs/genética , Ovinos/genética , Animais , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/fisiologia , Redes e Vias Metabólicas , MicroRNAs/metabolismo , Ovinos/fisiologia
14.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924491

RESUMO

Continuous monitoring of heart-rate is expected to lead to early detection of physical discomfort. In this study, we propose a non-contact heart-rate measurement method which can be used in an environment such as driver heart-rate monitoring with body movement. The method is based on the electric field strength transmitted through the human body that changes with the diastole and systole of the heart. Unlike conventional displacement detection of the skin surface, we attempted to capture changes in the internal structure of the human body by irradiating the human body with microwaves and acquiring microwaves that pass through the heart. We first estimated the electric field strength transmitted through the heart using three receiving sensors to reduce the body movement effect. Then we decomposed the estimated transmitted electric field using stationary wavelet transform to eliminate significant distortion due to body movement. As a result, we achieved an estimation accuracy of heart-rate as high as 98% in a verification experiment with normal body movement.


Assuntos
Algoritmos , Análise de Ondaletas , Frequência Cardíaca , Humanos , Monitorização Fisiológica , Movimento
15.
J Sci Food Agric ; 101(9): 3854-3861, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33336371

RESUMO

BACKGROUND: Protein and some minerals of rice seed are negatively affected by projected carbon dioxide (CO2 ) levels. However, an in-depth assessment of rice quality that encompasses both CO2 and temperature for a wide range of nutritional parameters is not available. Using a free-air CO2 enrichment facility with temperature control, we conducted a field experiment with two levels of CO2 (ambient; ambient + 200 ppm) and two levels of temperature (ambient; ambient + 1.5 °C). An in-depth examination of qualitative factors indicated a variable nutritional response. RESULTS: For total protein, albumin, glutelin, and prolamin, elevated CO2 reduced seed concentrations irrespective of temperature. Similarly, several amino acids declined further as a function of higher temperature and elevated CO2 relative to elevated CO2 alone. Higher temperature increased the lipid percentage of seed; however, elevated CO2 reduced the overall lipid content. At the nutrient elements level, whereas elevated CO2 reduced certain elements, a combination of CO2 and temperature could compensate for CO2 reductions but was element dependent. CONCLUSION: Overall, these data are, at present, the most detailed analysis of rising CO2 /temperature on the qualitative characteristics of rice. They indicate that climate change is likely to significantly impact the nutritional integrity of rice, with subsequent changes in human health on a global basis. © 2020 Society of Chemical Industry.


Assuntos
Dióxido de Carbono/análise , Ecossistema , Oryza/química , Aminoácidos/análise , Mudança Climática , Minerais/análise , Minerais/metabolismo , Nitrogênio , Valor Nutritivo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Temperatura
16.
J Cell Mol Med ; 24(24): 14539-14548, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33174391

RESUMO

Prostate cancer is the most common malignancy in men in developed countries. In previous study, we identified HNF1B (Hepatocyte Nuclear Factor 1ß) as a downstream effector of Enhancer of zeste homolog 2 (EZH2). HNF1B suppresses EZH2-mediated migration of two prostate cancer cell lines via represses the EMT process by inhibiting SLUG expression. Besides, HNF1B expression inhibits cell proliferation through unknown mechanisms. Here, we demonstrated that HNF1B inhibited the proliferation rate of prostate cancer cells. Overexpression of HNF1B in prostate cancer cells led to the arrest of G1 cell cycle and decreased Cyclin D1 expression. In addition, we re-explored data from ChIP-sequencing (ChIP-seq) and RNA-sequencing (RNA-seq), and demonstrated that HNF1B repressed Cyclin D1 via direct suppression of SMAD6 expression. We also identified CDKN2A as a HNF1B-interacting protein that would contribute to HNF1B-mediated repression of SMAD6 expression. In summary, we provide the novel mechanisms and evidence in support HNF1B as a tumour suppressor gene for prostate cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator 1-beta Nuclear de Hepatócito/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteína Smad6/genética , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fator 1-beta Nuclear de Hepatócito/genética , Humanos , Imuno-Histoquímica , Masculino , Neoplasias da Próstata/patologia , Ligação Proteica , Proteína Smad6/metabolismo
17.
Med Sci Monit ; 26: e926789, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33223514

RESUMO

BACKGROUND The mechanism of how intermittent fasting (IF) improves metabolism is not fully understood. Our study aimed to explore the effect of IF on lipid metabolism in obese mice, specifically on the intestinal flora. MATERIAL AND METHODS Diet-induced obese (DIO) mice were subjected to ad libitum (AL) feeding or IF (alternate-day fasting) for 30 days. We examined the lipid metabolism, fat distribution, gene expression of lipid metabolism, and intestinal flora in the mice. RESULTS Despite having access to the same high-fat diet as the AL-fed groups, IF mice displayed pronounced weight loss, and their lipid metabolism significantly improved, mainly reflected in lower serum lipid levels and ameliorated liver steatosis. IF also reduced metabolic endotoxemia in DIO mice. The 16S ribosomal deoxyribonucleic acid gene amplicon sequencing suggested that IF did not change the community richness but had a tendency to increase community diversity in the intestinal flora. In addition, IF significantly reduced the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Allobaculum in the intestinal flora. CONCLUSIONS IF can improve fat metabolism, reduce fat accumulation, promote white fat conversion to beige, and improve gut microbiota.


Assuntos
Jejum , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Tecido Adiposo Bege/patologia , Tecido Adiposo Branco/patologia , Animais , Peso Corporal , Dieta Hiperlipídica , Análise Discriminante , Disbiose/sangue , Disbiose/microbiologia , Ingestão de Energia , Comportamento Alimentar , Lipopolissacarídeos/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos
18.
Sensors (Basel) ; 20(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322141

RESUMO

Biopotential sensing technology with electrodes has a great future in medical treatment and human-machine interface, whereas comfort and longevity are two significant problems during usage. Noncontact electrode is a promising alternative to achieve more comfortable and long term biopotential signal recordings than contact electrode. However, it could pick up a significantly higher level of common-mode (CM) noise, which is hardly solved with passive filtering. The impedance imbalance at the electrode-body interface is a limiting factor of this problem, which reduces the common mode rejection ratio (CMRR) of the amplifier. In this work, we firstly present two novel CM noise reduction circuit designs. The circuit designs are based on electrode-body impedance imbalance cancellation. We perform circuit analysis and circuit simulations to explain the principles of the two circuits, both of which showed effectiveness in CM noise rejection. Secondly, we proposed a practical approach to detect and monitor the electrode-body impedance imbalance change. Compared with the conventional approach, it has certain advantages in interference immunity, and good linearity for capacitance. Lastly, we show experimental evaluation results on one of the designs we proposed. The results indicated the validity and feasibility of the approach.


Assuntos
Amplificadores Eletrônicos , Impedância Elétrica , Ruído , Capacitância Elétrica , Eletrodos , Desenho de Equipamento , Humanos , Monitorização Fisiológica
19.
Environ Geochem Health ; 42(11): 3887-3898, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32621275

RESUMO

The aim of this study was to explore the impact of prenatal Al and Mg on placental oxidative stress and inflammatory mRNA expression. A total of 2519 pregnant women from the China Ma'anshan birth cohort participated in this study. Al and Mg levels were measured by inductively coupled plasma mass spectrometry (ICP-MS). Placental stress and inflammatory mRNA expression were assessed by RT-PCR. The median Al levels in the first and second trimesters of pregnancy and in cord blood were higher than the corresponding median Mg levels. Predictors of lower Al and Mg levels included Han ethnicity and high education according to a mixed linear model. Multiple linear regression analysis revealed that Al and Al/Mg levels had a positive association with inflammatory mRNA expression and placental oxidative stress in the second trimester of pregnancy. A negative association existed between Al and Al/Mg levels and inflammatory mRNA expression and placenta oxidative stress in the cord blood, with the exception of IL-1ß expression. In conclusion, prenatal Al and Mg status was associated with placental oxidative stress and inflammatory mRNA expression. More preclinical studies are needed to confirm the relevant mechanism.


Assuntos
Alumínio/sangue , Poluentes Ambientais/sangue , Inflamação/genética , Magnésio/sangue , Estresse Oxidativo , Adulto , China , Estudos de Coortes , Exposição Ambiental/análise , Poluentes Ambientais/análise , Feminino , Sangue Fetal/química , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Inflamação/sangue , Estilo de Vida , Estresse Oxidativo/genética , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , RNA Mensageiro/genética , Análise de Regressão
20.
BMC Med Genet ; 20(1): 191, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791268

RESUMO

BACKGROUND: Prostate cancer (Pca) remains one of the leading adult malignancies. PTEN (Phosphatase and Tensin Homolog) mutant is the top common mutated genes in prostate cancer, which makes it a promising biomarker in future individualized treatment. METHODS: We obtained gene expression data of prostate cancer from TCGA (The Cancer Genome Atlas) database for analysis. We analyzed the DEGs (differentially expressed genes), and used online tools or software to analyze Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set enrichment analysis (GSEA), Search Tool for the Retrieval of Interacting Genes/Proteins, and Molecular Complex Detection. RESULTS: Latest TCGA data showed PTEN mutation in about 22% patients. 1736 DEGs in total were identified. Results of gene functional enrichment analyses showed that muscle contraction, negative regulation of growth and multiple metabolic progression were significantly enriched. GNG13, ACTN2, POTEE, ACTA1, MYH6, MYH3, MYH7, MYL1, TNNC1 and TNNC2 were the top ten hub genes. Patients with PTEN mutation showed relatively decreased mRNA expression level of PTEN. Survival analysis indicated the risk of disease recurrence in patients with PTEN mutation. CONCLUSIONS: Our findings suggested that PTEN mutation in prostate cancer may induce changes in a variety of genes and pathways and affect disease progression, suggesting the significance of PTEN mutation in individualized treatment of prostate cancer.


Assuntos
Biologia Computacional , Mutação , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Masculino , PTEN Fosfo-Hidrolase/metabolismo , Medicina de Precisão , Prognóstico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Mapas de Interação de Proteínas , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA