Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 67(5): 812-825.e5, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28826672

RESUMO

Delta-secretase, a lysosomal asparagine endopeptidase (AEP), simultaneously cleaves both APP and tau, controlling the onset of pathogenesis of Alzheimer's disease (AD). However, how this protease is post-translationally regulated remains unclear. Here we report that serine-arginine protein kinase 2 (SRPK2) phosphorylates delta-secretase and enhances its enzymatic activity. SRPK2 phosphorylates serine 226 on delta-secretase and accelerates its autocatalytic cleavage, leading to its cytoplasmic translocation and escalated enzymatic activities. Delta-secretase is highly phosphorylated in human AD brains, tightly correlated with SRPK2 activity. Overexpression of a phosphorylation mimetic (S226D) in young 3xTg mice strongly promotes APP and tau fragmentation and facilitates amyloid plaque deposits and neurofibrillary tangle (NFT) formation, resulting in cognitive impairment. Conversely, viral injection of the non-phosphorylatable mutant (S226A) into 5XFAD mice decreases APP and tau proteolytic cleavage, attenuates AD pathologies, and reverses cognitive defects. Our findings support that delta-secretase phosphorylation by SRPK2 plays a critical role in aggravating AD pathogenesis.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Secretases da Proteína Precursora do Amiloide/genética , Animais , Comportamento Animal , Encéfalo/patologia , Encéfalo/fisiopatologia , Cognição , Modelos Animais de Doenças , Predisposição Genética para Doença , Células HEK293 , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fenótipo , Fosforilação , Placa Amiloide , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Interferência de RNA , Serina , Especificidade por Substrato , Fatores de Tempo , Transfecção , Proteínas tau/genética , Proteínas tau/metabolismo
2.
J Biol Chem ; 299(12): 105462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977223

RESUMO

The accumulation of abnormal Tau protein is a common feature of various neurodegenerative diseases. Truncated Tau, resulting from cleavage by asparaginyl endopeptidase (AEP, δ-secretase), promotes its own phosphorylation and aggregation. Our study focused on understanding the regulatory mechanisms of AEP activation and its interaction with other proteins. We discovered that c-Src plays a critical role in mediating the activation and polyubiquitination of AEP in response to epidermal growth factor stimulation. In addition, we investigated the involvement of tumor necrosis factor receptor-associated factor 6 (Traf6), an E3 ligase, in the regulation of AEP levels and its interaction with c-Src. Knockdown of Traf6 effectively inhibited c-Src-induced AEP activation. To gain further insights into the molecular mechanisms, we employed mass spectrometry to identify the specific tyrosine residues of Traf6 that are phosphorylated by c-Src. By mutating these phosphorylation sites to phenylalanine, we disrupted Traf6-mediated polyubiquitination and subsequently observed the inactivation of AEP. This finding suggests that the phosphorylation of Traf6 by c-Src is crucial for AEP activation. Pharmacological inhibition of c-Src reduced the phosphorylation of Traf6 and inhibited AEP activation in neurons derived from human-induced pluripotent stem cells. Conditional knockout of Traf6 in neurons prevented c-Src-induced AEP activation and subsequent Tau truncation in vivo. Moreover, phosphorylation of Traf6 is highly correlated with AEP activation, Tau368 and pathological Tau (AT8) in Alzheimer's disease brain. Overall, our study elucidates the role of c-Src in regulating AEP-cleaved Tau through phosphorylating Traf6. Targeting the c-Src-Traf6 pathway may hold potential for the treatment of Alzheimer's disease and other tauopathies.


Assuntos
Cisteína Endopeptidases , Fator 6 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Quinases da Família src , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cisteína Endopeptidases/metabolismo , Fosforilação , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Proteínas tau/metabolismo , Fator 6 Associado a Receptor de TNF/química , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ativação Enzimática , Fenilalanina , Ubiquitinação
3.
Eur J Neurosci ; 59(10): 2732-2747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501537

RESUMO

Elevated serum homocysteine (Hcy) level is a risk factor for Alzheimer's disease (AD) and accelerates cell aging. However, the mechanism by which Hcy induces neuronal senescence remains largely unknown. In this study, we observed that Hcy significantly promoted senescence in neuroblastoma 2a (N2a) cells with elevated ß-catenin and Kelch-like ECH-associated protein 1 (KEAP1) levels. Intriguingly, Hcy promoted the interaction between KEAP1 and the Wilms tumor gene on the X chromosome (WTX) while hampering the ß-catenin-WTX interaction. Mechanistically, Hcy attenuated the methylation level of the KEAP1 promoter CpG island and activated KEAP1 transcription. However, a slow degradation rate rather than transcriptional activation contributed to the high level of ß-catenin. Hcy-upregulated KEAP1 competed with ß-catenin to bind to WTX. Knockdown of both ß-catenin and KEAP1 attenuated Hcy-induced senescence in N2a cells. Our data highlight a crucial role of the KEAP1-ß-catenin pathway in Hcy-induced neuronal-like senescence and uncover a promising target for AD treatment.


Assuntos
Senescência Celular , Homocisteína , Proteína 1 Associada a ECH Semelhante a Kelch , Neuroblastoma , Ubiquitinação , beta Catenina , beta Catenina/metabolismo , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Animais , Homocisteína/farmacologia , Homocisteína/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Linhagem Celular Tumoral , Ubiquitinação/efeitos dos fármacos , Neuroblastoma/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
4.
Mol Med ; 30(1): 79, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844847

RESUMO

BACKGROUND: Increased level of serum cholic acid (CA) is often accompanied with decreased CYP2E1 expression in hepatocellular carcinoma (HCC) patients. However, the roles of CA and CYP2E1 in hepatocarcinogenesis have not been elucidated. This study aimed to investigate the roles and the underlying mechanisms of CYP2E1 and CA in HCC cell growth. METHODS: The proteomic analysis of liver tumors from DEN-induced male SD rats with CA administration was used to reveal the changes of protein expression in the CA treated group. The growth of CA-treated HCC cells was examined by colony formation assays. Autophagic flux was assessed with immunofluorescence and confocal microscopy. Western blot analysis was used to examine the expression of CYP2E1, mTOR, AKT, p62, and LC3II/I. A xenograft tumor model in nude mice was used to examine the role of CYP2E1 in CA-induced hepatocellular carcinogenesis. The samples from HCC patients were used to evaluate the clinical value of CYP2E1 expression. RESULTS: CA treatment significantly increased the growth of HCC cells and promoted xenograft tumors accompanied by a decrease of CYP2E1 expression. Further studies revealed that both in vitro and in vivo, upregulated CYP2E1 expression inhibited the growth of HCC cells, blocked autophagic flux, decreased AKT phosphorylation, and increased mTOR phosphorylation. CYP2E1 was involved in CA-activated autophagy through the AKT/mTOR signaling. Finally, decreased CYP2E1 expression was observed in the tumor tissues of HCC patients and its expression level in tumors was negatively correlated with the serum level of total bile acids (TBA) and gamma-glutamyltransferase (GGT). CONCLUSIONS: CYP2E1 downregulation contributes to CA-induced HCC development presumably through autophagy regulation. Thus, CYP2E1 may serve as a potential target for HCC drug development.


Assuntos
Autofagia , Carcinoma Hepatocelular , Proliferação de Células , Ácido Cólico , Citocromo P-450 CYP2E1 , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/induzido quimicamente , Humanos , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Masculino , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Ratos , Proliferação de Células/efeitos dos fármacos , Camundongos , Ratos Sprague-Dawley , Transdução de Sinais , Proteômica/métodos , Modelos Animais de Doenças , Camundongos Nus
5.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305233

RESUMO

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Assuntos
Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Transtorno Depressivo Maior/genética , Fosfatidilinositol 3-Quinases , Neurônios , Plasticidade Neuronal
6.
Phys Chem Chem Phys ; 26(15): 11667-11675, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563364

RESUMO

The design of efficient, stable and cost-effective electrocatalysts for the hydrogen evolution reaction holds substantial significance in water electrolysis, but it remains challenging. Tremella-like nickel-molybdenum bimetal phosphide encapsulated cobalt phosphide (NiMoP/CoP) with hierarchical architectures has been effectively synthesized on nickel foam (NF) via a straightforward hydrothermal followed by low-temperature phosphating method. Based on the unique structural benefits, it significantly increases the number of redox active centers, enhances the electrical conductivity of materials, and diminishes the ion diffusion path lengths, thereby promoting efficient electrolyte penetration and reducing the inherent resistance. The as-obtained NiMoP/CoP/NF electrocatalyst exhibited remarkable catalytic activity with an ultralow overpotential of 38 mV (10 mA cm-2) and low Tafel slope of 83 mV dec-1. The straightforward synthesis process and exceptional electrocatalytic properties of NiMoP/CoP/NF demonstrate great potential for the HER to replace the precious metal catalyst.

7.
J Neurochem ; 166(2): 389-402, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319115

RESUMO

C9orf72-derived dipeptide repeats (DPRs) proteins have been regarded as the pathogenic cause of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). As the most toxic DPRs in C9-ALS/FTD, poly-proline-arginine (poly-PR) is associated with the stability and accumulation of p53, which consequently induces neurodegeneration. However, the exact molecular mechanism via which C9orf72 poly-PR stabilizes p53 remains unclear. In this study, we showed that C9orf72 poly-PR induces not only neuronal damage but also p53 accumulation and p53 downstream gene activation in primary neurons. C9orf72 (PR)50 also slows down p53 protein turnover without affecting the p53 transcription level and thus promotes its stability in N2a cells. Interestingly, the ubiquitin-proteasome system but not the autophagy function was impaired in (PR)50 transfected N2a cells, resulting in defective p53 degradation. Moreover, we found that (PR)50 induces mdm2 mistranslocation from the nucleus to the cytoplasm and competitively binds to p53, reducing mdm2-p53 interactions in the nucleus in two different (PR)50 transfected cells. Our data strongly indicate that (PR)50 reduces mdm2-p53 interactions and causes p53 to escape from the ubiquitin-proteasome system, promoting its stability and accumulation. Inhibiting or at least downregulating (PR)50 binding with p53 may be therapeutically exploited for the treatment of C9-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Ubiquitina/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Citoplasma/metabolismo , Dipeptídeos/genética , Expansão das Repetições de DNA
8.
Phys Chem Chem Phys ; 25(34): 23277-23285, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37608788

RESUMO

Efficient non-noble metal bifunctional electrocatalysts can increase the conversion rate of electric energy in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, a ball & sheet MoS2/Ni3S2 composite with wide-layer-spacing and high 1T-rich MoS2 is assembled on nickel foam (NF) via a two-step solvothermal method with polymeric sulfur (S-r-DIB) as the sulfur source. The obtained material serves as both the cathode and the anode toward overall water splitting in an alkaline electrolyte. The results proved that the interpenetration of MoS2/Ni3S2-p with a ball and sheet structure increased the material active surface area and exposed more catalytic active sites, which contributed to the penetration of solution and the transfer of charge/hydrion. Meanwhile, two different semiconductors of MoS2 and Ni3S2 along with the presence of ample active sulfur edge sites and few-layer, wide-layer-spacing structures of MoS2 lead to an outstanding electrocatalytic activity. In particular, the electrodes of MoS2/Ni3S2-p only need a battery voltage of 1.55 V at 10 mA cm-2. The bifunctional electrocatalyst MoS2/Ni3S2-p also shows excellent stability at large current densities during the electrochemical test.

9.
Phys Chem Chem Phys ; 25(38): 26298-26307, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37747098

RESUMO

The preparation of an electrocatalyst for the oxygen evolution reaction (OER) with high catalytic activity, good long-term durability and rapid reaction kinetics through interface engineering is of great significance. Herein, we have developed a bimetallic sulfide particle cluster-supported three-dimensional graphene aerogel (FeNiS@GA), which serves as an efficient electrocatalyst for OER, by a one-step hydrothermal method. Profiting from the synergy of the FeNiS particle cluster with high capacitance and GA with its three-dimensional porous nanostructure, FeNiS@GA shows a high specific surface area, large pore volume, low contact resistance, and decreases the electron and ion transport routes. FeNiS@GA exhibits outstanding OER activity (when the current density is 50 mA cm-2, the overpotential is 341 mV), low Tafel slope (63.87 mV dec-1) and remarkable stability in alkaline solutions, outperforming FeNiS, NiS@GA, FeS@GA and RuO2. Due to its simple synthesis process and excellent electrocatalytic performance, FeNiS@GA shows great potential to replace noble metal-based catalysts in practical applications.

10.
Mol Psychiatry ; 26(10): 6002-6022, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33339957

RESUMO

The apolipoprotein E ε4 (APOE4) allele is a major genetic risk factor for Alzheimer's disease (AD), and its protein product, ApoE4, exerts its deleterious effects mainly by influencing amyloid-ß (Aß) and Tau (neurofibrillary tangles, NFTs) deposition in the brain. However, the molecular mechanism dictating its expression during ageing and in AD remains incompletely clear. Here we show that C/EBPß acts as a pivotal transcription factor for APOE and mediates its mRNA levels in an age-dependent manner. C/EBPß binds the promoter of APOE and escalates its expression in the brain. Knockout of C/EBPß in AD mouse models diminishes ApoE expression and Aß pathologies, whereas overexpression of C/EBPß accelerates AD pathologies, which can be attenuated by anti-ApoE monoclonal antibody or deletion of ApoE via its specific shRNA. Remarkably, C/EBPß selectively promotes more ApoE4 expression versus ApoE3 in human neurons, correlating with higher activation of C/EBPß in human AD brains with ApoE4/4 compared to ApoE3/3. Therefore, our data support that C/EBPß is a crucial transcription factor for temporally regulating APOE gene expression, modulating ApoE4's role in AD pathogenesis.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteína E4/genética , Apolipoproteínas E , Encéfalo/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Camundongos , Camundongos Knockout
11.
Mol Psychiatry ; 26(2): 586-603, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-30382187

RESUMO

δ-Secretase, an age-dependent asparagine protease, cleaves both amyloid precursor protein (APP) and Tau and is required for amyloid plaque and neurofibrillary tangle pathologies in Alzheimer's disease (AD). However, whether δ-secretase activation is sufficient to trigger AD pathogenesis remains unknown. Here we show that the fragments of δ-secretase-cleavage, APP (586-695) and Tau(1-368), additively drive AD pathogenesis and cognitive dysfunctions. Tau(1-368) strongly augments BACE1 expression and Aß generation in the presence of APP. The Tau(1-368) fragment is more robust than full-length Tau in binding active STAT1, a BACE1 transcription factor, and promotes its nuclear translocation, upregulating BACE1 and Aß production. Notably, Aß-activated SGK1 or JAK2 kinase phosphorylates STAT1 and induces its association with Tau(1-368). Inhibition of these kinases diminishes stimulatory effect of Tau(1-368). Knockout of STAT1 abolishes AD pathologies induced by δ-secretase-generated APP and Tau fragments. Thus, we show that Tau may not only be a downstream effector of Aß in the amyloid hypothesis, but also act as a driving force for Aß, when cleaved by δ-secretase.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Emaranhados Neurofibrilares , Fator de Transcrição STAT1 , Proteínas tau/metabolismo
12.
EMBO Rep ; 21(3): e48328, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930681

RESUMO

Overexpressing Tau counteracts apoptosis and increases dephosphorylated ß-catenin levels, but the underlying mechanisms are elusive. Here, we show that Tau can directly and robustly acetylate ß-catenin at K49 in a concentration-, time-, and pH-dependent manner. ß-catenin K49 acetylation inhibits its phosphorylation and its ubiquitination-associated proteolysis, thus increasing ß-catenin protein levels. K49 acetylation further promotes nuclear translocation and the transcriptional activity of ß-catenin, and increases the expression of survival-promoting genes (bcl2 and survivin), counteracting apoptosis. Mutation of Tau's acetyltransferase domain or co-expressing non-acetylatable ß-catenin-K49R prevents increased ß-catenin signaling and abolishes the anti-apoptotic function of Tau. Our data reveal that Tau preserves ß-catenin by acetylating K49, and upregulated ß-catenin/survival signaling in turn mediates the anti-apoptotic effect of Tau.


Assuntos
Transdução de Sinais , beta Catenina , Proteínas tau , Acetilação , Apoptose/genética , Sobrevivência Celular/genética , Humanos , Fosforilação , beta Catenina/genética , beta Catenina/metabolismo
13.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555780

RESUMO

Chronic hypoxia is a risk factor for Alzheimer's disease (AD), and the neurofibrillary tangle (NFT) formed by hyperphosphorylated tau is one of the two major pathological changes in AD. However, the effect of chronic hypoxia on tau phosphorylation and its mechanism remains unclear. In this study, we investigated the role of HIF-1α (the functional subunit of hypoxia-inducible factor 1) in tau pathology. It was found that in Sprague-Dawley (SD) rats, global hypoxia (10% O2, 6 h per day) for one month induced cognitive impairments. Meanwhile it induced HIF-1α increase, tau hyperphosphorylation, and protein phosphatase 2A (PP2A) deficiency with leucine carboxyl methyltransferase 1(LCMT1, increasing PP2A activity) decrease in the rats' hippocampus. The results were replicated by hypoxic treatment in primary hippocampal neurons and C6/tau cells (rat C6 glioma cells stably expressing human full-length tau441). Conversely, HIF-1α silencing impeded the changes induced by hypoxia, both in primary neurons and SD rats. The result of dual luciferase assay proved that HIF-1α acted as a transcription factor of LCMT1. Unexpectedly, HIF-1α decreased the protein level of LCMT1. Further study uncovered that both overexpression of HIF-1α and hypoxia treatment resulted in a sizable degradation of LCMT1 via the autophagy--lysosomal pathway. Together, our data strongly indicated that chronic hypoxia upregulates HIF-1α, which obviously accelerated LCMT1 degradation, thus counteracting its transcriptional expression. The increase in HIF-1α decreases PP2A activity, finally resulting in tau hyperphosphorylation and cognitive dysfunction. Lowering HIF-1α in chronic hypoxia conditions may be useful in AD prevention.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Humanos , Ratos , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/genética , Hipóxia/complicações , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Ratos Sprague-Dawley , Proteínas tau/genética , Proteínas tau/metabolismo
14.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31085626

RESUMO

Intracellular tau accumulation forming neurofibrillary tangles is hallmark pathology of Alzheimer's disease (AD), but how tau accumulation induces synapse impairment is elusive. By overexpressing human full-length wild-type tau (termed hTau) to mimic tau abnormality as seen in the brain of sporadic AD patients, we find that hTau accumulation activates JAK2 to phosphorylate STAT1 (signal transducer and activator of transcription 1) at Tyr701 leading to STAT1 dimerization, nuclear translocation, and its activation. STAT1 activation suppresses expression of N-methyl-D-aspartate receptors (NMDARs) through direct binding to the specific GAS element of GluN1, GluN2A, and GluN2B promoters, while knockdown of STAT1 by AAV-Cre in STAT1flox/flox mice or expressing dominant negative Y701F-STAT1 efficiently rescues hTau-induced suppression of NMDAR expression with amelioration of synaptic functions and memory performance. These findings indicate that hTau accumulation impairs synaptic plasticity through JAK2/STAT1-induced suppression of NMDAR expression, revealing a novel mechanism for hTau-associated synapse and memory deficits.


Assuntos
Regulação da Expressão Gênica , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Fator de Transcrição STAT1/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Janus Quinase 2/metabolismo , Transtornos da Memória/psicologia , Camundongos , Modelos Biológicos , Plasticidade Neuronal , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Proteínas tau/genética
15.
Proc Natl Acad Sci U S A ; 115(15): 3954-3959, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581300

RESUMO

Amyloid beta (Aß) is a major pathological marker in Alzheimer's disease (AD), which is principally regulated by the rate-limiting ß-secretase (i.e., BACE1) cleavage of amyloid precursor protein (APP). However, how BACE1 activity is posttranslationally regulated remains incompletely understood. Here, we show that BACE1 is predominantly SUMOylated at K501 residue, which escalates its protease activity and stability and subsequently increases Aß production, leading to cognitive defect seen in the AD mouse model. Compared with a non-SUMOylated K501R mutant, injection of wild-type BACE1 significantly increases Aß production and triggers cognitive dysfunction. Furthermore, overexpression of wild-type BACE1, but not non-SUMOylated K501R mutant, facilitates senile plaque formation and aggravates the cognitive deficit seen in the APP/PS1 AD mouse model. Together, our data strongly suggest that K501 SUMOylation on BACE1 plays a critical role in mediating its stability and enzymatic activity.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Motivos de Aminoácidos , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Ácido Aspártico Endopeptidases/genética , Cognição , Modelos Animais de Doenças , Estabilidade Enzimática , Humanos , Camundongos , Camundongos Transgênicos , Sumoilação
16.
Int J Neuropsychopharmacol ; 22(1): 57-70, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407508

RESUMO

Background: Hyperhomocysteinemia is an independent risk factor for dementia, including Alzheimer's disease. Lowering homocysteine levels with folic acid treatment with or without vitamin B12 has shown few clinical benefits on cognition. Methods: To verify the effect of emodin, a naturally active compound from Rheum officinale, on hyperhomocysteinemia-induced dementia, rats were treated with homocysteine injection (HCY, 400 µg/kg/d, 2 weeks) via vena caudalis. Afterwards, HCY rats with cognitive deficits were administered intragastric emodin at different concentrations for 2 weeks: 0 (HCY-E0), 20 (HCY-E20), 40 (HCY-E40), and 80 mg/kg/d (HCY-E80). Results: ß-Amyloid overproduction, tau hyperphosphorylation, and losses of neuron and synaptic proteins were detected in the hippocampi of HCY-E0 rats with cognitive deficits. HCY-E40 and HCY-E80 rats had better behavioral performance. Although it did not reduce the plasma homocysteine level, emodin (especially 80 mg/kg/d) reduced the levels of ß-amyloid and tau phosphorylation, decreased the levels of ß-site amyloid precursor protein-cleaving enzyme 1, and improved the activity of protein phosphatase 2A. In the hippocampi of HCY-E40 and HCY-E80 rats, the neuron numbers, levels of synaptic proteins, and phosphorylation of the cAMP responsive element-binding protein at Ser133 were increased. In addition, depressed microglial activation and reduced levels of 5-lipoxygenase, interleukin-6, and tumor necrosis factor α were also observed. Lastly, hyperhomocysteinemia-induced microangiopathic alterations, oxidative stress, and elevated DNA methyltransferases 1 and 3ß were rescued by emodin. Conclusions: Emodin represents a novel potential candidate agent for hyperhomocysteinemia-induced dementia and Alzheimer's disease-like features.


Assuntos
Demência/tratamento farmacológico , Demência/etiologia , Emodina/farmacologia , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/tratamento farmacológico , Nootrópicos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/fisiologia , Demência/metabolismo , Demência/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Proteínas tau/metabolismo
17.
Proc Natl Acad Sci U S A ; 113(26): E3773-81, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298345

RESUMO

Intracellular accumulation of wild-type tau is a hallmark of sporadic Alzheimer's disease (AD), but the molecular mechanisms underlying tau-induced synapse impairment and memory deficit are poorly understood. Here we found that overexpression of human wild-type full-length tau (termed hTau) induced memory deficits with impairments of synaptic plasticity. Both in vivo and in vitro data demonstrated that hTau accumulation caused remarkable dephosphorylation of cAMP response element binding protein (CREB) in the nuclear fraction. Simultaneously, the calcium-dependent protein phosphatase calcineurin (CaN) was up-regulated, whereas the calcium/calmodulin-dependent protein kinase IV (CaMKIV) was suppressed. Further studies revealed that CaN activation could dephosphorylate CREB and CaMKIV, and the effect of CaN on CREB dephosphorylation was independent of CaMKIV inhibition. Finally, inhibition of CaN attenuated the hTau-induced CREB dephosphorylation with improved synapse and memory functions. Together, these data indicate that the hTau accumulation impairs synapse and memory by CaN-mediated suppression of nuclear CaMKIV/CREB signaling. Our findings not only reveal new mechanisms underlying the hTau-induced synaptic toxicity, but also provide potential targets for rescuing tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Calcineurina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sinapses/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Animais , Calcineurina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Humanos , Masculino , Memória , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Transdução de Sinais , Sinapses/enzimologia , Sinapses/genética , Proteínas tau/genética
18.
Alzheimers Dement ; 15(2): 217-231, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30321504

RESUMO

INTRODUCTION: Altered cell cycle reentry has been observed in Alzheimer's disease (AD). Denticleless (DTL) was predicted as the top driver of a cell cycle subnetwork associated with AD. METHODS: We systematically investigated DTL expression in AD and studied the molecular, cellular, and behavioral endophenotypes triggered by DTL overexpression. RESULTS: We experimentally validated that CDT2, the protein encoded by DTL, activated cyclin-dependent kinases through downregulating P21, which induced tau hyperphosphorylation and Aß toxicity, two hallmarks of AD. We demonstrated that cyclin-dependent kinases inhibition by roscovitine not only rescued CDT2-induced cognitive defects but also reversed expression changes induced by DTL overexpression. RNA-seq data from the DTL overexpression experiments revealed the molecular mechanisms underlying CDT2 controlled cell cycle reentry in AD. DISCUSSION: These findings provide new insights into the molecular mechanisms of AD pathogenesis and thus pave a way for developing novel therapeutics for AD by targeting AD specific cell cycle networks and drivers.


Assuntos
Doença de Alzheimer/patologia , Ciclo Celular/fisiologia , Proteínas Nucleares/metabolismo , Animais , Regulação para Baixo , Humanos , Camundongos , Fosforilação/fisiologia , Proteínas tau/metabolismo
19.
J Cell Mol Med ; 22(7): 3489-3502, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675957

RESUMO

Endoplasmic reticulum (ER) stress is involved in Alzheimer's disease (AD), but the mechanism is not fully understood. Here, we injected tunicamycin (TM), a recognized ER stress inducer, into the brain ventricle of Sprague-Dawley (SD) rats to induce the unfolded protein response (UPR), demonstrated by the enhanced phosphorylation of pancreatic ER kinase (PERK), inositol-requiring enzyme-1 (IRE-1) and activating transcription factor-6 (ATF-6). We observed that UPR induced spatial memory deficits and impairments of synaptic plasticity in the rats. After TM treatment, GSK-3ß was activated and phosphorylation of cAMP response element binding protein at Ser129 (pS129-CREB) was increased with an increased nuclear co-localization of pY126-GSK-3ß and pS129-CREB. Simultaneous inhibition of GSK-3ß by hippocampal infusion of SB216763 (SB) attenuated TM-induced UPR and spatial memory impairment with restoration of pS129-CREB and synaptic plasticity. We concluded that UPR induces AD-like spatial memory deficits with mechanisms involving GSK-3ß/pS129-CREB pathway.


Assuntos
Encéfalo/patologia , Estresse do Retículo Endoplasmático/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Memória Espacial/fisiologia , Fator 6 Ativador da Transcrição/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Proteínas de Membrana/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Sprague-Dawley , Serina/metabolismo , Memória Espacial/efeitos dos fármacos , Tunicamicina/toxicidade , Tirosina/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo
20.
Mol Ther ; 25(3): 752-764, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202389

RESUMO

Histone deacetylase 2 (HDAC2) plays a major role in the epigenetic regulation of gene expression. Previous studies have shown that HDAC2 expression is strongly increased in Alzheimer's disease (AD), a major neurodegenerative disorder and the most common form of dementia. Moreover, previous studies have linked HDAC2 to Aß overproduction in AD; however, its involvement in tau pathology and other memory-related functions remains unclear. Here, we show that increased HDAC2 levels strongly correlate with phosphorylated tau in a mouse model of AD. HDAC2 overexpression induced AD-like tau hyperphosphorylation and aggregation, which were accompanied by a loss of dendritic complexity and spine density. The ectopic expression of HDAC2 resulted in the deacetylation of the hepatocyte nuclear factor 4α (HNF-4A) transcription factor, which disrupted its binding to the miR-101b promoter. The suppression of miR-101b caused an upregulation of its target, AMP-activated protein kinase (AMPK). The introduction of miR-101b mimics or small interfering RNAs (siRNAs) against AMPK blocked HDAC2-induced tauopathy and dendritic impairments in vitro. Correspondingly, miR-101b mimics or AMPK siRNAs rescued tau pathology, dendritic abnormalities, and memory deficits in AD mice. Taken together, the current findings implicate the HDAC2/miR-101/AMPK pathway as a critical mediator of AD pathogenesis. These studies also highlight the importance of epigenetics in AD and provide novel therapeutic targets.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Histona Desacetilase 2/metabolismo , MicroRNAs/genética , Tauopatias/genética , Tauopatias/metabolismo , Doença de Alzheimer/patologia , Animais , Sítios de Ligação , Sequência Consenso , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Fator 4 Nuclear de Hepatócito/genética , Histona Desacetilase 2/genética , Transtornos da Memória/genética , Camundongos , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Células Piramidais/metabolismo , Células Piramidais/patologia , Tauopatias/patologia , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA