Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 56(7): 997-1010, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818582

RESUMO

Systemic therapies, the ultimate strategies for patients with advanced hepatocellular carcinoma (HCC), are suffering from serious clinical challenges, such as the occurrence and development of drug resistance. Treatment resistance aggravates tumor progression partly by inducing tumor metastasis. Regorafenib-resistant HCC cells exhibit a highly striking metastatic phenotype, but the detailed mechanisms underlying these aggressive behaviors remain elusive. Here, we conduct transcriptome sequencing analysis to identify COL5A2 as a crucial driver of the metastatic characteristics of regorafenib-resistant HCC cells. COL5A2 is aberrantly highly expressed in resistant cells, and its genetic depletion significantly suppresses proliferation, migration, invasion, vasculogenic mimicry (VM) formation and lung metastasis in vitro and in vivo, concomitant with the downregulation of VE-cadherin, EphA2, Twist1, p-p38 and p-STAT3 expressions. LIFR is confirmed to be an essential downstream molecule of COL5A2, and its expression is observably elevated by COL5A2 depletion. Ectopic overexpression of LIFR drastically attenuates the proliferation, migration, invasion and VM of regorafenib-resistant cells and represses the expressions of VM-related molecules and the activation of p38/STAT3 signaling pathway. Interestingly, rescue experiments show that the inhibition of the above aggressive features of resistant cells by COL5A2 loss is clearly alleviated by silencing of LIFR. Collectively, our results reveal that COL5A2 promotes the ability of regorafenib-resistant HCC cells to acquire a metastatic phenotype by attenuating LIFR expression and suggest that therapeutic regimens targeting the COL5A2/LIFR axis may be beneficial for HCC patients with therapeutic resistance.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Compostos de Fenilureia , Piridinas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Piridinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Camundongos , Camundongos Nus , Fenótipo , Metástase Neoplásica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Subunidade alfa de Receptor de Fator Inibidor de Leucemia
2.
Pharmacol Res ; 184: 106456, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116709

RESUMO

The development of tumor therapeutic resistance is one of the important reasons for the failure of antitumor therapy. Starting with multiple targets and multiple signaling pathways is helpful in understanding the mechanism of tumor resistance. The overexpression of prolyl isomerase Pin1 is highly correlated with the malignancy of cancer, since Pin1 controls many oncogenes and tumor suppressors, as well as a variety of cancer-driving signaling pathways. Strikingly, numerous studies have shown that Pin1 is directly involved in therapeutic resistance. In this review, we mainly summarize the functions and mechanisms of Pin1 in therapeutic resistance of multifarious cancers, such as breast, liver, and pancreatic carcinomas. Furtherly, from the perspective of Pin1-driven cancer signaling pathways including Raf/MEK/ERK, PI3K/Akt, Wnt/ß-catenin, NF-κB, as well as Pin1 inhibitors containing juglone, epigallocatechin-3-gallate (EGCG), all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), it is better to demonstrate the important potential role and mechanism of Pin1 in resistance and sensitization to cancer therapies. It will provide new therapeutic approaches for clinical reversal and prevention of tumor resistance by employing synergistic administration of Pin1 inhibitors and chemotherapeutics, implementing combination therapy of Pin1-related cancer signaling pathway inhibitors and Pin1 inhibitors, and exploiting novel Pin1-specific inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , NF-kappa B , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptidilprolil Isomerase/metabolismo , Peptidilprolil Isomerase/uso terapêutico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Tretinoína/uso terapêutico , beta Catenina
3.
Mol Carcinog ; 60(2): 151-163, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428809

RESUMO

Regorafenib is approved for patients with unresectable hepatocellular carcinoma (HCC) following sorafenib. However, the effect of regorafenib on HCC metastasis and its mechanism are poorly understood. Here, our data showed that regorafenib significantly restrained the migration, invasion and vasculogenic mimicry (VM) of HCC cells, and downregulated the expression of epithelial-to-mesenchymal transition (EMT)/VM-related molecules. Using RNA-seq and cellular thermal shift assays, we found that inhibitor of differentiation 1 (ID1) was a key target of regorafenib. In HCC tissues, the protein expression of ID1 was positively correlated with EMT and VM formation (CD34- /PAS+ ). Functionally, ID1 knockdown inhibited HCC cell migration, invasion, metastasis, and VM formation in vitro and in vivo, with upregulation of E-cadherin and downregulation of Snail and VE-cadherin. Moreover, Snail overexpression promoted the migration, invasion, and VM formation of ID1 knockdown cells. Snail knockdown reduced the migration, invasion, and VM formation of ID1 overexpression cells. Finally, regorafenib suppressed VM formation and decreased the expression of ID1, VE-cadherin and Snail in HCC PDX model. In conclusion, we manifested that regorafenib distinctly inhibited EMT in HCC cells via targeting ID1, leading to the suppression of cell migration, invasion and VM formation. These findings suggest that regorafenib may be developed as a suitable therapeutic agent for HCC metastasis.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteína 1 Inibidora de Diferenciação/antagonistas & inibidores , Neoplasias Hepáticas/prevenção & controle , Neovascularização Patológica/prevenção & controle , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/genética , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
4.
Pharmacol Res ; 166: 105507, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610718

RESUMO

Hepatocellular carcinoma (HCC) is a typical hyper-vascular solid tumor; aberrantly rich in tumor vascular network contributes to its malignancy. Conventional anti-angiogenic therapies seem promising but transitory and incomplete efficacy on HCC. Vasculogenic mimicry (VM) is one of functional microcirculation patterns independent of endothelial vessels which describes the plasticity of highly aggressive tumor cells to form vasculogenic-like networks providing sufficient blood supply for tumor growth and metastasis. As a pivotal alternative mechanism for tumor vascularization when tumor cells undergo lack of oxygen and nutrients, VM has an association with the malignant phenotype and poor clinical outcome for HCC, and may challenge the classic anti-angiogenic treatment of HCC. Current studies have contributed numerous findings illustrating the underlying molecular mechanisms and signaling pathways supporting VM in HCC. In this review, we summarize the correlation between epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and VM, the role of hypoxia and extracellular matrix remodeling in VM, the involvement of adjacent non-cancerous cells, cytokines and growth factors in VM, as well as the regulatory influence of non-coding RNAs on VM in HCC. Moreover, we discuss the clinical significance of VM in practice and the potential therapeutic strategies targeting VM for HCC. A better understanding of the mechanism underlying VM formation in HCC may optimize anti-angiogenic treatment modalities for HCC.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Terapia de Alvo Molecular , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos
5.
Cancer Sci ; 110(8): 2442-2455, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31148345

RESUMO

The human prolyl isomerase PIN1, best known for its association with carcinogenesis, has recently been indicated in the disease of pancreatic ductal adenocarcinoma (PDAC). However, the functions of PIN1 and the feasibility of targeting PIN1 in PDAC remain elusive. For this purpose, we examined the expression of PIN1 in cancer, related paracarcinoma and metastatic cancer tissues by immunohistochemistry and analyzed the associations with the pathogenesis of PDAC in 173 patients. The functional roles of PIN1 in PDAC were explored in vitro and in vivo using both genetic and chemical PIN1 inhibition. We showed that PIN1 was upregulated in pancreatic cancer and metastatic tissues. High PIN1 expression is significantly association with poor clinicopathological features and shorter overall survival and disease-free survival. Further stratified analysis showed that PIN1 phenotypes refined prognostication in PDAC. Inhibition of PIN1 expression with RNA interference or with all trans retinoic acid decreased not only the growth but also the migration and invasion of PDAC cells through regulating the key molecules of multiple cancer-driving pathways, simultaneously resulting in cell cycle arrest and mesenchymal-epithelial transition in vitro. Furthermore, genetic and chemical PIN1 ablation showed dramatic inhibition of the tumorigenesis and metastatic spread and then reduced the tumor burden in vivo. We provided further evidence for the use of PIN1 as a promising therapeutic target in PDAC. Genetic and chemical PIN1 ablation exerted potent antitumor effects through blocking multiple cancer-driving pathways in PDAC. More potent and specific PIN1 targeted inhibitors could be exploited to treat this aggressive cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Peptidilprolil Isomerase de Interação com NIMA/genética , Metástase Neoplásica/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Mol Carcinog ; 58(1): 144-155, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30259564

RESUMO

Although the CXCL12-CXCR4/CXCR7 chemokine axis is demonstrated to play an integral role in tumor progression, the controversy exists and the role of CXCL12-CXCR4/CXCR7 signaling axis in epithelial-mesenchymal transition (EMT) of human ovarian cancer has not been explored. Here, we showed that in ovarian cancer CXCL12 induced EMT phenotypes including the spindle-like cell morphology, podia and stress fiber formation, a decrease in E-cadherin expression, and increases in mesenchymal N-cadherin and vimentin expressions. These effects of CXCL12 could be antagonized by the CXCR4 antagonist AMD3100, but not by the anti-CXCR7 antibody. The expressions of the EMT markers were significantly down-regulated by the CXCR4 siRNA, and up-regulated by the pcDNA3.1/CXCR4 plasmid, whereas not affected by the CXCR7 siRNA. Furthermore, intraperitoneal administration of AMD3100 inhibited tumor dissemination and growth in the nude mice inoculated with ovarian IGROV-1 cells with a concomitant reduction in EMT marker expressions. Collectively, these data suggest that CXCR4, rather than CXCR7, plays a key role in CXCL12-activated EMT phenotypes, and targeting the CXCL12-CXCR4 chemokine axis represents a potential therapeutic strategy to prevent ovarian cancer progression.


Assuntos
Quimiocina CXCL12/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Animais , Apoptose , Benzilaminas , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Ciclamos , Feminino , Compostos Heterocíclicos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/metabolismo , Receptores CXCR4/antagonistas & inibidores , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Carcinog ; 58(8): 1450-1464, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31026381

RESUMO

Gastric cancer is the second leading cause of cancer-related mortality and the fourth most common cancer globally. High intratumor heterogeneity of advanced gastric cancer poses great challenges to targeted therapy due to simultaneous activation of many redundant cancer-driving pathways. A central common signaling mechanism in cancer is proline-directed phosphorylation, which is further regulated by the unique proline isomerase Pin1. Pin1 inhibition exerts anticancer activity by blocking multiple cancer-driving pathways in some cancers, but its role in gastric cancer is not fully understood. Here we detected Pin1 protein expression in 1065 gastric cancer patients and paired normal tissues using immunohistochemistry and Western blot, and then examined the effects of Pin1 overexpression, and genetic and chemical Pin1 inhibition using Pin1 short hairpin RNA or small molecule inhibitor all-trans retinoic acid (ATRA) on tumorigenesis of human gastric cancer in vitro and in vivo, followed by biochemical analyses to elucidate Pin1 regulated oncogenic pathways. We found that Pin1 was significantly overexpressed in primary and metastasized tumors, with Pin1 overexpression being correlated with advanced stage and poor prognosis. Furthermore, whereas Pin1 overexpression promoted the transformed phenotype in immortalized and nontransformed human gastric cells, either genetic or chemical Pin1 inhibition in multiple human gastric cancer cells potently suppressed cell growth, G1/S transition and colony formation in vitro, as well as tumor growth in xenograft tumor models in vivo, which were further supported by downregulation of multiple key oncoproteins in PI3K/AKT and Wnt/ß-catenin signaling pathways. These results not only provide the first evidence for a critical role of Pin1 in the tumorigenesis of gastric cancer but also suggest that targeting Pin1 using ATRA or other inhibitors offers an effective new therapeutic approach for treating advanced gastric cancer.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/patologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Peptidilprolil Isomerase de Interação com NIMA/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Tretinoína/farmacologia , Via de Sinalização Wnt
8.
Mol Carcinog ; 56(8): 1896-1908, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28277622

RESUMO

Recent global epidemiological studies revealed the lower ovarian cancer death from long-term use of oral contraceptives. However, the underlying mechanism of action is not clear. Here, we use the abortifacient metapristone (RU486 derivative) to test the hypothesis that the contraceptives might interrupt CXCL12/CXCR4 chemokine axis to inhibit ovarian cancer metastasis. Metapristone at concentrations (

Assuntos
Antineoplásicos/uso terapêutico , Quimiocina CXCL12/metabolismo , Mifepristona/análogos & derivados , Invasividade Neoplásica/prevenção & controle , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/prevenção & controle , Neoplasias Peritoneais/secundário , Receptores CXCR4/metabolismo , Abortivos/química , Abortivos/farmacologia , Abortivos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimioprevenção , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mifepristona/química , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Invasividade Neoplásica/patologia , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Peritônio/patologia , Transdução de Sinais/efeitos dos fármacos
9.
Toxicol Mech Methods ; 26(1): 36-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26907462

RESUMO

OBJECTIVE: Mifepristone (RU486) is an oral first-line contraceptive used by hundreds of millions of women, and recently it was tested for anticancer activity in both genders worldwide. We are developing metapristone (the N-monodemethyl RU486) as a potential metastasis chemopreventive. The present acute and 30-d subacute toxicity study aimed at examining and compared in parallel the potential toxicity of the two drugs. METHODS: The single-dose acute toxicity and 30-d subacute toxicity studies were conducted in mice and rats, respectively, by gavaging metapristone or mifepristone at various doses. Blood samples and organs were collected for blood chemistry, hematology and histology analyses. RESULTS: Oral mifepristone (3000 mg/kg) caused 30% and 40% death in female and male mice, respectively, within 15 h post-dosing. In comparison, the same dose of metapristone produced 30% acute death in males only. Thirty-day oral administration of the two drugs to rats (12.5, 50 and 200 mg/kg/day) caused reversible hepatotoxicity that only occurred at 200 mg/kg/day group, evidenced by the elevated liver enzyme activity and liver organ weight. CONCLUSION: The present study, for the first time, reveals reversible hepatotoxicity in rats caused by the 30-d consecutive administration at the high dose, and warns the potential hepatotoxicity caused by long-term administrations of high doses of mifepristone or metapristone in clinical trials but not by the acute single abortion doses.


Assuntos
Abortivos Esteroides/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Mifepristona/análogos & derivados , Mifepristona/toxicidade , Abortivos Esteroides/administração & dosagem , Animais , Feminino , Masculino , Mifepristona/administração & dosagem , Ratos
10.
Cancer ; 121(17): 3036-45, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25945459

RESUMO

BACKGROUND: This study was aimed at establishing a sensitive and specific isolation, characterization, and enumeration method for living circulating tumor cells (CTCs) in patients with colorectal carcinoma. METHODS: Quantitative isolation and characterization of CTCs were performed through a combination of immunomagnetic negative enrichment and fluorescence-activated cell sorting. Isolated CTCs were identified by immunofluorescence staining. The viability and purity of the sorted cells were determined by flow cytometry. Blood samples spiked with HCT116 cells (range, 3-250 cells) were used to determine specificity, recovery, and sensitivity. The method was used to enumerate, characterize, and isolate living CTCs in 10 mL of blood from patients with colorectal carcinoma. RESULTS: The average recovery of HCT116 cells was 61% or more at each spiking level, and the correlation coefficient was 0.992. An analysis of samples from all 18 patients with colorectal carcinoma revealed that 94.4% were positive for CTCs with an average of 33 ± 24 CTCs per 10 mL of blood and with a diameter of 14 to 20 µm (vs 8-12 µm for lymphoma). All patients were CD47(+) , with only 4.3% to 61.2% being CD44(+) . The number of CTCs was well correlated with the patient TNM stage and could be detected in patients at an early cancer stage. The sorted cells could be recultured, and their viability was preserved. CONCLUSIONS: This method provides a novel technique for highly sensitive and specific detection and isolation of CTCs in patients with colorectal carcinoma. This method complements the existing approaches for the de novo functional identification of a wide variety of CTC types. It is likely to help in predicting a patient's disease progression and potentially in selecting the appropriate treatment.


Assuntos
Neoplasias Colorretais/patologia , Células Neoplásicas Circulantes/patologia , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Citometria de Fluxo , Humanos , Receptores de Hialuronatos/metabolismo , Separação Imunomagnética , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Sensibilidade e Especificidade
11.
J Nanobiotechnology ; 13: 9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25643843

RESUMO

BACKGROUND: Cancer metastasis caused by circulating tumor cells (CTCs) accounts for 90% cancer-related death worldwide. Blocking the circulation of CTCs in bloodstream and their hetero-adhesion to vascular endothelia of the distant metastatic organs may prevent cancer metastasis. Nanomaterial-based intervention with adhesion between CTCs and endothelia has not been reported. Driven by the novel idea that multivalent conjugation of EpCAM and Slex antibodies to dendrimer surface may enhance the capacity and specificity of the nanomaterial conjugates for capturing and down-regulating colorectal CTCs, we conjugated the dendrimer nanomaterial with the EpCAM and Slex antibodies, and examined the capacity of the dual antibody-coated nanomaterial for their roles in interrupting CTCs-related cancer metastasis. RESULTS: The antibody-coated nanomaterial was synthesized and characterized. The conjugates specifically bound and captured colon cancer cells SW620. The conjugate inhibited the cells' viability and their adhesion to fibronectin (Fn)-coated substrate or human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner. In comparison with SW480 and LoVo cell lines, the activity and adhesion of SW620 to Fn-coated substrate and HUVECs were more specifically inhibited by the dual antibody conjugate because of the higher levels of EpCAM and Slex on SW620 cell surface. The hetero-adhesion between SW620 and Fn-coated substrate, or HUVECs was inhibited by about 60-70%. The dual conjugate showed the inhibition capacity more significant than its corresponding single antibody conjugates. CONCLUSIONS: The present study provides the new evidence that coating nanomaterials with more than one antibody against CTCs may effectively interfere with the interaction between SW620 and HUVECs.


Assuntos
Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Endotélio Vascular/citologia , Nanoestruturas , Células Neoplásicas Circulantes/efeitos dos fármacos , Anticorpos/química , Antígenos de Neoplasias/imunologia , Antineoplásicos/química , Moléculas de Adesão Celular/imunologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células , Dendrímeros/química , Relação Dose-Resposta a Droga , Molécula de Adesão da Célula Epitelial , Fibronectinas/química , Fibronectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanoestruturas/química , Metástase Neoplásica/prevenção & controle , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia
12.
Med Res Rev ; 34(5): 979-1000, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24585714

RESUMO

Mifepristone (RU486) is a born-for-woman molecule discovered three decades ago. Unlike those antihypertensive and antipsychotic pharmaceutical blockbusters, this abortifacient offers relatively low profit potential. Current understanding of mechanism of action of mifepristone and its on-going clinical trials are changing our views on the drug beyond its abortifacient scope. Here we briefly review its metabolism and pharmacokinetic properties including its unique enterohepatic circulation, its mechanisms of actions involving antiprogesterone and antiglucocorticoid, growth inhibition of various cancer cell lines, suppression of invasive and metastatic cancer potential, downregulation of Cdk2, Bcl-2, and NF-kappa B, interference of heterotypic cell adhesion to basement membrane, and cell migration. We comprehensively analyze recent results from preclinical and clinical studies using mifepristone as an anticancer drug for breast, meningioma, and gliomas tumors in the central nervous system, prostate cancer, ovarian and endometrial cancer, and gastric adenocarcinoma. Although mifepristone has more benefits for global public health than we originally thought, its effect as a postmetastatic chemotherapeutic agent is limited. Nonetheless, owing to its unique safe, metabolism and other pharmacological properties, metapristone (the primary metabolite of mifepristone) may have potential for cancer metastatic chemoprevention.


Assuntos
Abortivos Esteroides/administração & dosagem , Aborto Terapêutico , Mifepristona/administração & dosagem , Metástase Neoplásica/prevenção & controle , Complicações Neoplásicas na Gravidez/patologia , Abortivos Esteroides/farmacocinética , Feminino , Humanos , Fígado/metabolismo , Mifepristona/farmacocinética , Gravidez
13.
Front Genet ; 13: 852708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801082

RESUMO

Background: Bladder cancer (BLCA) is among the most frequent types of cancer. Patients with BLCA have a significant recurrence rate and a poor post-surgery survival rate. Recent research has found a link between tumor immune cell infiltration (ICI) and the prognosis of BLCA patients. However, the ICI's picture of BLCA remains unclear. Methods: Common gene expression data were obtained by combining the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) expression databases. Two computational algorithms were proposed to unravel the ICI landscape of BLCA patients. The R package "limma" was applied to find differentially expressed genes (DEGs). ICI patterns were defined by the unsupervised clustering method. Principal-component analysis (PCA) was used to calculate the ICI score. In addition, the combined ICI score and tumor burden mutation (TMB) were utilized to assess BLCA patients' prognosis. The predictive value of ICI scores was verified by different clinical characteristics. Results: A total of 569 common gene expression data were retrieved from TCGA and GEO cohorts. CD8+ T cells were found to have a substantial positive connection with activated memory CD4+ T cells and immune score. On the contrary, CD8+ T cells were found to have a substantial negative connection with macrophages M0. Thirty-eight DEGs were selected. Two ICI patterns were defined by the unsupervised clustering method. Patients of BLCA were separated into two groups. The high ICI score group exhibited a better outcome than the low ICI score one (p < 0.001). Finally, the group with a high tumor mutation burden (TMB) as well as a high ICI score had the best outcome. (p < 0.001). Conclusions: Combining TMB and ICI scores resulted in a more accurate survival prediction, suggesting that ICI scores could be used as a prognostic marker for BLCA patients.

14.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3353-3362, 2022 Sep 25.
Artigo em Zh | MEDLINE | ID: mdl-36151805

RESUMO

A fusion protein containing a tetanus toxin peptide, a tuftsin peptide and a SARS-CoV-2S protein receptor-binding domain (RBD) was prepared to investigate the effect of intramolecular adjuvant on humoral and cellular immunity of RBD protein. The tetanus toxin peptide, tuftsin peptide and S protein RBD region were connected by a flexible polypeptide, and a recombinant vector was constructed after codon optimization. The recombinant S-TT-tuftsin protein was prepared by prokaryotic expression and purification. BALB/c mice were immunized after mixed with aluminum adjuvant, and the humoral and cellular immune effects were evaluated. The recombinant S-TT-tuftsin protein was expressed as an inclusion body, and was purified by ion exchange chromatography and renaturated by gradient dialysis. The renaturated protein was identified by Dot blotting and reacted with serum of descendants immunized with SARS-CoV-2 subunit vaccine. The results showed that the antibody level reached a plateau after 35 days of immunization, and the serum antibody ELISA titer of mice immunized with recombinant protein containing intramolecular adjuvant was up to 1:66 240, which was significantly higher than that of mice immunized with S-RBD protein (P < 0.05). At the same time, the recombinant protein containing intramolecular adjuvant stimulated mice to produce a stronger lymphocyte proliferation ability. The stimulation index was 4.71±0.15, which was significantly different from that of the S-RBD protein (1.83±0.09) (P < 0.000 1). Intramolecular adjuvant tetanus toxin peptide and tuftsin peptide significantly enhanced the humoral and cellular immune effect of the SARS-CoV-2 S protein RBD domain, which provideda theoretical basis for the development of subunit vaccines for SARS-CoV-2 and other viruses.


Assuntos
COVID-19 , Tuftsina , Vacinas Virais , Adjuvantes Imunológicos , Alumínio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Toxina Tetânica , Vacinas de Subunidades Antigênicas
15.
Sheng Wu Gong Cheng Xue Bao ; 38(6): 2332-2341, 2022 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-35786483

RESUMO

The purpose of this study was to develop a fluorescence chromatography method for the detection of cartilage oligomeric matrix protein (COMP) in the auxiliary diagnosis of rheumatoid arthritis (RA). The principle of double antibody sandwich method was used to prepare immunochromatographic test strips, and the performance evaluation and methodological comparison were carried out. Through the detection of clinical samples, a receiver operating characteristic (ROC) curve was obtained, and the sensitivity, specificity, positive and negative predictive values of the test strip were calculated. The linear range was 0.39-50.00 ng/mL. The coefficients of variation inter and intra batches were less than 15%. The test strip was stable at 37 ℃ for 20 days, and the variation range of fluorescence signal intensity was within 15%. There was no cross reaction with rheumatoid factor (RF) and anti-cyclic citrulline peptide (anti-CCP) antibody. Forty-eight clinical serum samples were detected in parallel with ELISA kit, and the correlation was good. The test strip prepared in this study was used to detect the sample, the cut-off value of COMP between RA patients and healthy people was 22.55 ng/mL (sensitivity 0.821, specificity 0.842, positive predictive value 0.741, negative predictive value 0.895). At the same time, the same sample was tested with ELISA kit, the sensitivity and specificity of the two methods reached more than 80%. A quantitative COMP fluorescence chromatography test strip was developed, which has the advantages of celerity, simplicity and sensitivity, and may provide rapid auxiliary diagnosis for RA patients.


Assuntos
Artrite Reumatoide , Fator Reumatoide , Proteína de Matriz Oligomérica de Cartilagem , Cromatografia de Afinidade , Humanos , Peptídeos Cíclicos
16.
Cancer Lett ; 524: 161-171, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687791

RESUMO

Sorafenib and its derivative regorafenib are the first- and second-line targeted drugs for advanced HCC, respectively. Although both drugs improve overall survival, drug resistance remains the major barrier to their full efficacy. Thus, strategies to enhance sorafenib and regorafenib efficacy against HCC are solely needed. Interleukin-6 receptor alpha (IL-6Rα) is the receptor of IL-6, a multi-functional cytokine, which plays key roles in liver-regeneration, inflammation and development of hepatocellular carcinoma (HCC). Here we show the expression of IL-6Rα was induced in response to sorafenib. Depletion of IL-6Rα abolished IL-6 induced STAT3 phosphorylation at 705th tyrosine and tumor growth of HCC cells under sorafenib treatment. Mechanistically, activating transcription factor 3 (ATF3) was induced in response to sorafenib and subsequently bound to the promoter of IL-6Rα, leading to its transcriptional activation. Depletion of ATF3 or its upstream transcription factor, ATF4, attenuated IL-6Rα induction and IL-6 mediated sorafenib resistance. The ATF4-ATF3-IL-6Rα cascade is also activated by regorafenib. Furthermore, blockade of IL-6Rα with the FDA approved IL-6Rα antibody drug, Sarilumab, drastically attenuated both sorafenib and regorafenib resistance in patient-derived xenograft (PDX) tumors, where human IL-6 could be detected by a novel in situ hybridization technique, named RNAscope. Together, our data reveal that ATF3-mediated IL-6Rα up-regulation promotes both sorafenib and regorafenib resistance in HCC, and targeting IL-6Rα represents a novel therapeutic strategy to enhance sorafenib/regorafenib efficacy for advanced HCC treatment.


Assuntos
Fator 3 Ativador da Transcrição/genética , Carcinoma Hepatocelular/tratamento farmacológico , Interleucina-6/genética , Neoplasias Hepáticas/tratamento farmacológico , Receptores de Interleucina-6/genética , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sheng Wu Gong Cheng Xue Bao ; 37(11): 4066-4074, 2021 Nov 25.
Artigo em Zh | MEDLINE | ID: mdl-34841806

RESUMO

Different fragments of SARS-CoV-2 nucleocapsid (N) protein were expressed and purified, and a fluorescence immunochromatography method for detection of SARS-CoV-2 total antibody was established. The effect of different protein fragments on the performance of the method was evaluated. The N protein sequence was analyzed by bioinformatics technology, expressed in prokaryotic cell and purified by metal ion affinity chromatography column. Different N protein fragments were prepared for comparison. EDC reaction was used to label fluorescence microsphere on the synthesized antigen to construct sandwich fluorescence chromatography antibody detection assay, and the performance was systemically evaluated. Among the 4 prepared N protein fragments, the full-length N protein (N419) was selected as the optimized coating antigen, N412 with 0.5 mol/L NaCl was used as the optimal combination; deleting 91-120 amino acids from the N-terminal of N412 reduced non-specific signal by 87.5%. the linear range of detection was 0.312-80 U/L, the limit of detection was 0.165 U/L, and the accuracy was more than 95%. A fluorescence immunochromatographic detection method for analysis of SARS-CoV-2 total antibody was established by pairing N protein fragments. The detection result achieved 98% concordance with the commercially available Guangzhou Wanfu test strip, which is expected to be used as a supplementary approach for detection of SARS-CoV-2. The assay could also provide experimental reference for improving the performance of COVID-19 antibody detection reagents.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Cromatografia de Afinidade , Imunofluorescência , Humanos , Microesferas , Sensibilidade e Especificidade
18.
Sheng Wu Gong Cheng Xue Bao ; 36(6): 1216-1222, 2020 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-32597071

RESUMO

A rapid and simple method to detect tumor markers in liver cancer was established by combining immunochromatography technique with fluorescent microsphere labeling. According to the principle of double antibody sandwich, the cytoskeleton-associated protein 4 (CKAP4) paired antibody was used as the labeled and coated antibody, and the goat anti-rabbit polyclonal antibody was used as the quality control line coated antibody in the preparation of the CKAP4 fluorescent immunochromatographic test strips. After the preparation, the test strips were evaluated on various performance indicators, such as linearity, precision and stability. The CKAP4 immunochromatographic strip prepared by time-resolved fluorescent microspheres had high sensitivity, and good specificity. Its precision was within 15%, recovery between 85% and 115%, and linear range between 25 and 1 000 pg/mL. The test strip could be kept stable at 37 °C for 20 days, and it correlated well with commercial ELISA kits. The CKAP4 fluorescence immunochromatography method can quantitatively detect the content of CKAP4 in serum. Furthermore, it is rapid, sensitive, simple, economical and single-person operation. This method has the potential of becoming a new method for the diagnosis and treatment of liver cancer.


Assuntos
Cromatografia de Afinidade , Neoplasias Hepáticas , Proteínas de Membrana , Técnicas de Diagnóstico Molecular , Animais , Anticorpos/metabolismo , Fluorescência , Humanos , Neoplasias Hepáticas/diagnóstico , Proteínas de Membrana/isolamento & purificação , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade
19.
Ann Transl Med ; 8(24): 1661, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33490173

RESUMO

BACKGROUND: In recent years, nanotechnology has attracted a plethora of attention due of its ability to effectively diagnose and treat various tumors. Virus-like particles (VLPs) have good biocompatibility, are safe and non-toxic, and have an internal hollow space, and as such they are often used as nano drug carriers. In recent years, it has become one of the hot spots in the field of biopharmaceutical engineering. METHODS: In this study, the tumor-targeting peptide RGD (Arg-Gly-Asp) was genetically inserted into the major immunodominant region (MIR) of the hepatitis B virus core protein (HBc). A series of characterization, including stability and optical properties, were evaluated. A visual diagnosis and analysis of the efficacy against tumor cells were conducted at the cell level and using a live animal model. RESULTS: This study demonstrated that the recombinant HBc-based VLPs could participate in self-assembly of monodispersed nanoparticles with well-defined morphology, and the near-infrared dye indocyanine green (ICG) could be packaged into the VLPs without any chemical modification. Moreover, the HBc-based VLPs could specifically target cancer cells via the interaction with overexpressed integrin αvß3. The treatment with ICG-loaded HBc-based VLPs showed significant inhibition of 4T1 breast cancer cell growth (84.87% tumor growth inhibition). The in vivo imaging experiments demonstrated that the ICG-loaded HBc-based VLPs generated excellent fluorescence in tumor sites in 4T1 breast cancer bearing mice. This provided crucial information on tumor mass location, boundaries, and shape. Moreover, compared to free ICG, the nanosystem showed significantly longer blood circulation time and superior accuracy in targeting the tumor. CONCLUSIONS: The ICG-loaded HBc-based VLPs prepared in this study were of good stability and biocompatibility. It showed strong tumor targeting specificity and tumor visualization. Thus, it is expected to provide a new experimental basis and theoretical support for the integration of VLPs in the clinical diagnosis and treatment of breast cancer.

20.
Mol Cancer Ther ; 19(3): 906-919, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879364

RESUMO

Gastric cancer is the third leading cause of cancer-related death worldwide. Diffuse type gastric cancer has the worst prognosis due to notorious resistance to chemotherapy and enrichment of cancer stem-like cells (CSC) associated with the epithelial-to-mesenchymal transition (EMT). The unique proline isomerase PIN1 is a common regulator of oncogenic signaling networks and is important for gastric cancer development. However, little is known about its roles in CSCs and drug resistance in gastric cancer. In this article, we demonstrate that PIN1 overexpression is closely correlated with advanced tumor stages, poor chemo-response and shorter recurrence-free survival in diffuse type gastric cancer in human patients. Furthermore, shRNA-mediated genetic or all-trans retinoic acid-mediated pharmaceutical inhibition of PIN1 in multiple human gastric cancer cells potently suppresses the EMT, cell migration and invasion, and lung metastasis. Moreover, PIN1 genetic or pharmaceutical inhibition potently eliminates gastric CSCs and suppresses their self-renewal and tumorigenicity in vitro and in vivo Consistent with these phenotypes, are that PIN1 biochemically targets multiple signaling molecules and biomarkers in EMT and CSCs and that genetic and pharmaceutical PIN1 inhibition functionally and drastically enhances the sensitivity of gastric cancer to multiple chemotherapy drugs in vitro and in vivo These results demonstrate that PIN1 inhibition sensitizes chemotherapy in gastric cancer cells by targeting CSCs, and suggest that PIN1 inhibitors may be used to overcome drug resistance in gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Tretinoína/farmacologia , Adulto , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , RNA Interferente Pequeno/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA