Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 239, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961321

RESUMO

BACKGROUND: The gut microbiota significantly influences the health and growth of red-spotted grouper (Epinephelus akaara), a well-known commercial marine fish from Fujian Province in southern China. However, variations in survival strategies and seasons can impact the stability of gut microbiota data, rendering it inaccurate in reflecting the state of gut microbiota. Which impedes the effective enhancement of aquaculture health through a nuanced understanding of gut microbiota. Inspired by this, we conducted a comprehensive analysis of the gut microbiota of wild and captive E. akaara in four seasons. RESULTS: Seventy-two E. akaara samples were collected from wild and captive populations in Dongshan city, during four different seasons. Four sections of the gut were collected to obtain comprehensive information on the gut microbial composition and sequenced using 16S rRNA next-generation Illumina MiSeq. We observed the highest gut microbial diversity in both captive and wild E. akaara during the winter season, and identified strong correlations with water temperature using Mantel analysis. Compared to wild E. akaara, we found a more complex microbial network in captive E. akaara, as evidenced by increased abundance of Bacillaceae, Moraxellaceae and Enterobacteriaceae. In contrast, Vibrionaceae, Clostridiaceae, Flavobacteriaceae and Rhodobacteraceae were found to be more active in wild E. akaara. However, some core microorganisms, such as Firmicutes and Photobacterium, showed similar distribution patterns in both wild and captive groups. Moreover, we found the common community composition and distribution characteristics of top 10 core microbes from foregut to hindgut in E. akaara. CONCLUSIONS: Collectively, the study provides relatively more comprehensive description of the gut microbiota in E. akaara, taking into account survival strategies and temporal dimensions, which yields valuable insights into the gut microbiota of E. akaara and provides a valuable reference to its aquaculture.


Assuntos
Bactérias , Microbioma Gastrointestinal , RNA Ribossômico 16S , Estações do Ano , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Ecossistema , Filogenia , Aquicultura , Bass/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , DNA Bacteriano/genética , Biodiversidade
2.
Antimicrob Agents Chemother ; 67(6): e0002223, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37162345

RESUMO

The emergence of azole-resistant and biofilm-forming Candida spp. contributes to the constantly increasing incidence of vulvovaginal candidiasis. It is imperative to explore new antifungal drugs or potential substituents, such as antimicrobial peptides, to alleviate the serious crisis caused by resistant fungi. In this study, a novel antimicrobial peptide named Scyampcin44-63 was identified in the mud crab Scylla paramamosain. Scyampcin44-63 exhibited broad-spectrum antimicrobial activity against bacteria and fungi, was particularly effective against planktonic and biofilm cells of Candida albicans, and exhibited no cytotoxicity to mammalian cells (HaCaT and RAW264.7) or mouse erythrocytes. Transcriptomic analysis revealed four potential candidacidal modes of Scyampcin44-63, including promotion of apoptosis and autophagy and inhibition of ergosterol biosynthesis and the cell cycle. Further study showed that Scyampcin44-63 caused damage to the plasma membrane and induced apoptosis and cell cycle arrest at G2/M in C. albicans. Scanning and transmission electron microscopy demonstrated that Scyampcin44-63-treated C. albicans cells were deformed with vacuolar expansion and destruction of organelles. In addition, C. albicans cells pretreated with the autophagy inhibitor 3-methyladenine significantly delayed the candidacidal effect of Scyampcin44-63, suggesting that Scyampcin44-63 might contribute to autophagic cell death. In a murine model of vulvovaginal candidiasis, the fungal burden of vaginal lavage was significantly decreased after treatment with Scyampcin44-63.


Assuntos
Braquiúros , Candidíase Vulvovaginal , Humanos , Feminino , Camundongos , Animais , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Peptídeos Antimicrobianos , Modelos Animais de Doenças , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Mamíferos
3.
Fish Shellfish Immunol ; 134: 108649, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36849046

RESUMO

With the antibiotics prohibition in feedstuffs worldwide, antimicrobial peptides (AMPs) are considered a more promising substitute for antibiotics to be used as feed additives, and positive results have been reported in livestock feeding studies. However, whether dietary supplementation of AMPs could promote the growth of mariculture animals such as fish and the underlying mechanism has not been elucidated yet. In the study, a recombinant AMP product of Scy-hepc was used as a dietary supplement (10 mg/kg) to feed mariculture juvenile large yellow croaker (Larimichthys crocea) with an average initial body weight (BW) of 52.9 g for 150 days. During the feeding trial, the fish fed with Scy-hepc showed a significant growth-promoting performance. Especially at 60 days after feeding, fish fed with Scy-hepc weighed approximately 23% more than the control group. It was further confirmed that the growth-related signaling pathways such as the GH-Jak2-STAT5-IGF1 growth axis, the PI3K-Akt and Erk/MAPK pathways were all activated in the liver after Scy-hepc feeding. Furthermore, a second repeated feeding trial was scheduled for 30 days using much smaller juvenile L. crocea with an average initial BW of 6.3 g, and similar positive results were observed. Further investigation revealed that the downstream effectors of the PI3K-Akt pathway, such as p70S6K and 4EBP1, were significantly phosphorylated, suggesting that Scy-hepc feeding might promote translation initiation and protein synthesis processes in the liver. Taken together, as an effector of innate immunity, AMP Scy-hepc played a role in promoting the growth of L. crocea and the underlying mechanism was associated with the activation of the GH-Jak2-STAT5-IGF1 axis, as well as the PI3K-Akt and Erk/MAPK signaling pathways.


Assuntos
Perciformes , Fator de Transcrição STAT5 , Animais , Peptídeos Antimicrobianos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Perciformes/metabolismo , Peixes/metabolismo , Antibacterianos/metabolismo , Proteínas de Peixes/metabolismo
4.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373118

RESUMO

In recent years, there has been a growing interest in changes in dynamic mechanical properties of mixed rubber during dynamic shear, yet the influence of vulcanized characteristics on the dynamic shear behavior of vulcanized rubber, particularly the effect of cross-linking density, has received little attention. This study focuses on styrene-butadiene rubber (SBR) and aims to investigate the impact of different cross-linking densities (Dc) on dynamic shear behavior using molecular dynamics (MD) simulations. The results reveal a remarkable Payne effect, where the storage modulus experiences a significant drop when the strain amplitude (γ0) exceeds 0.1, which can be attributed to the fracture of the polymer bond and the decrease in the molecular chain's flexibility. The influence of various Dc values mainly resides at the level of molecular aggregation in the system, where higher Dc values impede molecular chain motion and lead to an increase in the storage modulus of SBR. The MD simulation results are verified through comparisons with existing literature.


Assuntos
Gastrópodes , Borracha , Animais , Simulação de Dinâmica Molecular , Elastômeros , Butadienos
5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982761

RESUMO

In the study, a new gene homologous to the known antimicrobial peptide Scygonadin was identified in mud crab Scylla paramamosain and named SCY3. The full-length sequences of cDNA and genomic DNA were determined. Similar to Scygonadin, SCY3 was dominantly expressed in the ejaculatory ducts of male crab and the spermatheca of post-mating females at mating. The mRNA expression was significantly up-regulated after stimulation by Vibrio alginolyticus, but not by Staphylococcus aureus. The recombinant protein rSCY3 had a killing effect on Micrococcus luteus and could improve the survival rate of mud crabs infected with V. alginolyticus. Further analysis showed that rSCY3 interacted with rSCY1 or rSCY2 using Surface Plasmon Resonance (SPR, a technology for detecting interactions between biomolecules using biosensor chips) and Mammalian Two-Hybrid (M2H, a way of detecting interactions between proteins in vivo). Moreover, the rSCY3 could significantly improve the sperm acrosome reaction (AR) of S. paramamosain and the results demonstrated that the binding of rSCY3, rSCY4, and rSCY5 to progesterone was a potential factor affecting the sperm AR by SCYs on. This study lays the foundation for further investigation on the molecular mechanism of SCYs involved in both immunity and physiological effects of S. paramamosain.


Assuntos
Braquiúros , Animais , Feminino , Masculino , Braquiúros/genética , Braquiúros/metabolismo , Reação Acrossômica , Sêmen , Espermatozoides , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/farmacologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Filogenia , Mamíferos
6.
Mar Drugs ; 20(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286474

RESUMO

Hepcidin is widely present in many kinds of fish and is an important innate immune factor. A variety of HAMP2-type hepcidins have strong antimicrobial activity and immunomodulatory functions and are expected to be developed as substitutes for antibiotics. In this study, the antimicrobial activity of Hepc2 from Japanese seabass (Lateolabrax japonicus) (designated as LJ-hep2) was investigated using its recombinant precursor protein (rLJ-hep2) expressed in Pichia pastoris and a chemically synthesized mature peptide (LJ-hep2(66-86)). The results showed that both rLJ-hep2 and synthetic LJ-hep2(66-86) displayed broad antimicrobial spectrum with potent activity against gram-negative and gram-positive bacteria, and fungi. Especially, LJ-hep2(66-86) had stronger antimicrobial activity and exhibited potent activity against several clinically isolated multidrug-resistant bacteria, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Enterococcus faecium. Moreover, LJ-hep2(66-86) exerted rapid bactericidal kinetic (killed tested bacteria within 2 h), induced significant morphological changes and promoted agglutination of E. coli, P. aeruginosa and Aeromonas hydrophila. The activity of LJ-hep2(66-86) against E. coli, P. aeruginosa and A. hydrophila was stable and remained active when heated for 30 min. In addition, LJ-hep2(66-86) exhibited no cytotoxicity to the mammalian cell line HEK293T and fish cell lines (EPC and ZF4). In vivo study showed that LJ-hep2(66-86) could improve the survival rate of marine medaka (Oryzias melastigma) by about 40% under the challenge of A. hydrophila, indicating its immunoprotective function. Taken together, both rLJ-hep2 and LJ-hep2(66-86) have good prospects to be used as potential antimicrobial agents in aquaculture and medicine in the future.


Assuntos
Hepcidinas , Oryzias , Animais , Humanos , Hepcidinas/química , Peptídeos Antimicrobianos , Escherichia coli , Células HEK293 , Bactérias , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Mamíferos
7.
Ecotoxicol Environ Saf ; 241: 113843, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36068765

RESUMO

Microplastics (MPs), due to their impacts on the ecosystem and their integration into the food web either through trophic transfer or ingestion directly from the ambient environment, are an emerging class of environmental contaminants posing a great threat to marine organisms. Most reports on the toxic effects of MPs exclusively focus on bioaccumulation, oxidative stress, pathological damage, and metabolic disturbance in fish. However, the collected information on fish immunity in response to MPs is poorly defined. In particular, little is known regarding mucosal immunity and the role of mucins. In this study, marine medaka (Oryzias melastigma) larvae were exposed to 6.0 µm beads of polystyrene microplastics (PS-MPs) at three environmentally relevant concentrations (102 particles/L, 104 particles/L, and 106 particles/L) for 14 days. The experiment was carried out to explore the developmental and behavioural indices, the transcriptional profiles of mucins, pro-inflammatory, immune, metabolism and antioxidant responses related genes, as well as the accumulation of PS-MPs in larvae. The results revealed that PS-MPs were observed in the gastrointestinal tract, with a concentration- and exposure time-dependent manner. No significant difference in the larval mortality was found between the treatment groups and the control, whereas the body length of larvae demonstrated a significant reduction at 106 particles/L on 14 days post-hatching. The swimming behaviour of the larvae became hyperactive under exposure to 104 and 106 particles/L PS-MPs. In addition, PS-MP exposure significantly up-regulated the mucin gene transcriptional levels of muc7-like and muc13-like, however down-regulated the mucin gene expression levels of heg1, muc2, muc5AC-like and muc13. The immune- and inflammation and metabolism-relevant genes (jak, stat-3, il-6, il-1ß, tnf-а, ccl-11, nf-κb, and sod) were significantly induced by PS-MPs at 104 and 106 particles/L compared to the control. Taken together, this study suggests that PS-MPs induced inflammation response and might obstruct the immune functions and retarded the growth of the marine medaka larvae even at environmentally relevant concentrations.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Ecossistema , Imunidade , Inflamação , Larva , Microplásticos/toxicidade , Mucinas/genética , Mucinas/metabolismo , Oryzias/metabolismo , Plásticos/toxicidade , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Natação , Poluentes Químicos da Água/análise
8.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362111

RESUMO

The abuse of antibiotics leads to the increase of bacterial resistance, which seriously threatens human health. Therefore, there is an urgent need to find effective alternatives to antibiotics, and antimicrobial peptides (AMPs) are the most promising antibacterial agents and have received extensive attention. In this study, a novel potential AMP was identified from the marine invertebrate Scylla paramamosain and named Spampcin. After bioinformatics analysis and AMP database prediction, four truncated peptides (Spa31, Spa22, Spa20 and Spa14) derived from Spampcin were screened, all of which showed potent antimicrobial activity with different antibacterial spectrum. Among them, Spampcin56-86 (Spa31 for short) exhibited strong bactericidal activity against a variety of clinical pathogens and could rapidly kill the tested bacteria within minutes. Further analysis of the antibacterial mechanism revealed that Spa31 disrupted the integrity of the bacterial membrane (as confirmed by scanning electron microscopy observation, NPN, and PI staining assays), leading to bacterial rupture, leakage of cellular contents (such as elevated extracellular ATP), increased ROS production, and ultimately cell death. Furthermore, Spa31 was found to interact with LPS and effectively inhibit bacterial biofilms. The antibacterial activity of Spa31 had good thermal stability, certain ion tolerance, and no obvious cytotoxicity. It is worth noting that Spa31 could significantly improve the survival rate of zebrafish Danio rerio infected with Pseudomonas aeruginosa, indicating that Spa31 played an important role in anti-infection in vivo. This study will enrich the database of marine animal AMPs and provide theoretical reference and scientific basis for the application of marine AMPs in medical fields.


Assuntos
Anti-Infecciosos , Braquiúros , Animais , Humanos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Bactérias/metabolismo , Braquiúros/metabolismo , Testes de Sensibilidade Microbiana , Peixe-Zebra/metabolismo
9.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628312

RESUMO

Scyreprocin is an antimicrobial peptide first identified in the mud crab Scylla paramamosain. Herein, we showed that its recombinant product (rScyreprocin) could significantly inhibit the growth of human lung cancer NCI-H460 cells (H460), but showed no cytotoxicity to human lung fibroblasts (HFL1). rScyreprocin was a membrane-active peptide that firstly induced the generation of reactive oxygen species (ROS) in H460, and led to endoplasmic reticulum stress and Ca2+ release, which resulted in mitochondrial dysfunction and subsequently activation of caspase-3 cascades, and ultimately led to apoptosis. The comprehensive results indicated that rScyreprocin exerted anticancer activity by disrupting cell membrane and inducing apoptosis. The in vivo efficacy test demonstrated that intratumoral injection of rScyreprocin significantly inhibited the growth of H460 xenografts, which was close to that of the cisplatin (inhibition rate: 69.94% vs. 80.76%). Therefore, rScyreprocin is expected to become a promising candidate for the treatment of lung cancer.


Assuntos
Peptídeos Antimicrobianos , Braquiúros , Neoplasias Pulmonares , Animais , Peptídeos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Apoptose , Braquiúros/metabolismo , Cálcio/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328805

RESUMO

Antimicrobial peptides (AMPs) identified in the reproductive system of animals have been widely studied for their antimicrobial activity, but only a few studies have focused on their physiological roles. Our previous studies have revealed the in vitro antimicrobial activity of two male gonadal AMPs, SCY2 and scyreprocin, from mud crab Scylla paramamosain. Their physiological functions, however, remain a mystery. In this study, the two AMPs were found co-localized on the sperm apical cap. Meanwhile, progesterone was confirmed to induce acrosome reaction (AR) of mud crab sperm in vitro, which intrigued us to explore the roles of the AMPs and progesterone in AR. Results showed that the specific antibody blockade of scyreprocin inhibited the progesterone-induced AR without affecting intracellular Ca2+ homeostasis, while the blockade of SCY2 hindered the influx of Ca2+. We further showed that SCY2 could directly bind to Ca2+. Moreover, progesterone failed to induce AR when either scyreprocin or SCY2 function was deprived. Taken together, scyreprocin and SCY2 played a dual role in reproductive immunity and sperm AR. To our knowledge, this is the first report on the direct involvement of AMPs in sperm AR, which would expand the current understanding of the roles of AMPs in reproduction.


Assuntos
Anti-Infecciosos , Braquiúros , Acrossomo , Reação Acrossômica , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Braquiúros/metabolismo , Masculino , Progesterona/metabolismo , Progesterona/farmacologia , Espermatozoides
11.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613722

RESUMO

New antimicrobial agents are urgently needed to address the increasing emergence and dissemination of multidrug-resistant bacteria. In the study, a chemically synthesized truncated peptide containing 22-amino acids derived from a C-type lectin homolog SpCTL6 of Scylla paramamosain was screened and found to exhibit broad-spectrum antimicrobial activity, indicating that it is an antimicrobial peptide (AMP), named Sp-LECin. Sp-LECin possessed the basic characteristics of most cationic AMPs, such as positive charge (+4) and a relatively high hydrophobicity (45%). After treatment with Sp-LECin, the disruption of microbial membrane integrity and even leakage of cellular contents was observed by scanning electron microscopy (SEM). In addition, Sp-LECin could bind lipopolysaccharide (LPS), increase the outer and inner membrane permeability and induce reactive oxygen species (ROS) production, ultimately leading to the death of Pseudomonas aeruginosa. Furthermore, Sp-LECin exhibited potent anti-biofilm activity against P. aeruginosa during both biofilm formation and maturation. Notably, Sp-LECin had no obvious cytotoxicity and could greatly improve the survival of P. aeruginosa-infected zebrafish, by approximately 40% over the control group after 72 h of treatment. This study indicated that Sp-LECin is a promising antibacterial agent with the potential to be used against devastating global pathogen infections such as P. aeruginosa.


Assuntos
Anti-Infecciosos , Infecções por Pseudomonas , Animais , Peixe-Zebra/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Pseudomonas aeruginosa/metabolismo , Anti-Infecciosos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Biofilmes
12.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967962

RESUMO

As the most severely lethal viral pathogen for crustaceans in both brackish water and freshwater, white spot syndrome virus (WSSV) has a mechanism of infection that remains largely unknown, which profoundly limits the control of WSSV disease. By using a hematopoietic tissue (Hpt) stem cell culture from the red claw crayfish Cherax quadricarinatus suitable for WSSV propagation in vitro, the intracellular trafficking of live WSSV, in which the acidic-pH-dependent endosomal environment was a prerequisite for WSSV fusion, was determined for the first time via live-cell imaging. When the acidic pH within the endosome was alkalized by chemicals, the intracellular WSSV virions were detained in dysfunctional endosomes, resulting in appreciable blocking of the viral infection. Furthermore, disrupted valosin-containing protein (C. quadricarinatus VCP [CqVCP]) activity resulted in considerable aggregation of endocytic WSSV virions in the disordered endosomes, which subsequently recruited autophagosomes, likely by binding to CqGABARAP via CqVCP, to eliminate the aggregated virions within the dysfunctional endosomes. Importantly, both autophagic sorting and the degradation of intracellular WSSV virions were clearly enhanced in Hpt cells with increased autophagic activity, demonstrating that autophagy played a defensive role against WSSV infection. Intriguingly, most of the endocytic WSSV virions were directed to the endosomal delivery system facilitated by CqVCP activity so that they avoided autophagy degradation and successfully delivered the viral genome into Hpt cell nuclei, which was followed by the propagation of progeny virions. These findings will benefit anti-WSSV target design against the most severe viral disease currently affecting farmed crustaceans.IMPORTANCE White spot disease is currently the most devastating viral disease in farmed crustaceans, such as shrimp and crayfish, and has resulted in a severe ecological problem for both brackish water and freshwater aquaculture areas worldwide. Efficient antiviral control of WSSV disease is still lacking due to our limited knowledge of its pathogenesis. Importantly, research on the WSSV infection mechanism is also quite meaningful for the elucidation of viral pathogenesis and virus-host coevolution, as WSSV is one of the largest animal viruses, in terms of genome size, that infects only crustaceans. Here, we found that most of the endocytic WSSV virions were directed to the endosomal delivery system, strongly facilitated by CqVCP, so that they avoided autophagic degradation and successfully delivered the viral genome into the Hpt cell nucleus for propagation. Our data point to a virus-sorting model that might also explain the escape of other enveloped DNA viruses.


Assuntos
Astacoidea/metabolismo , Autofagia/fisiologia , Endossomos/metabolismo , Proteína com Valosina/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Astacoidea/virologia , Técnicas de Cultura de Células , Endossomos/virologia , Doenças dos Peixes/virologia , Concentração de Íons de Hidrogênio , Viroses
13.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008449

RESUMO

The abuse of antibiotics in aquaculture and livestock no doubt has exacerbated the increase in antibiotic-resistant bacteria, which imposes serious threats to animal and human health. The exploration of substitutes for antibiotics from marine animals has become a promising area of research, and antimicrobial peptides (AMPs) are worth investigating and considering as potential alternatives to antibiotics. In the study, we identified a novel AMP gene from the mud crab Scylla paramamosain and named it Sparanegtin. Sparanegtin transcripts were most abundant in the testis of male crabs and significantly expressed with the challenge of lipopolysaccharide (LPS) or Vibrio alginolyticus. The recombinant Sparanegtin (rSparanegtin) was expressed in Escherichia coli and purified. rSparanegtin exhibited activity against Gram-positive and Gram-negative bacteria and had potent binding affinity with several polysaccharides. In addition, rSparanegtin exerted damaging activity on the cell walls and surfaces of P. aeruginosa with rougher and fragmented appearance. Interestingly, although rSparanegtin did not show activity against V. alginolyticus in vitro, it played an immunoprotective role in S. paramamosain and exerted an immunomodulatory effect by modulating several immune-related genes against V. alginolyticus infection through significantly reducing the bacterial load in the gills and hepatopancreas and increasing the survival rate of crabs.


Assuntos
Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacologia , Braquiúros/metabolismo , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Animais , Peptídeos Antimicrobianos/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/farmacologia , Braquiúros/genética , Braquiúros/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Masculino , Viabilidade Microbiana/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Testículo/metabolismo , Distribuição Tecidual , Regulação para Cima , Vibrio alginolyticus/patogenicidade
14.
Fish Shellfish Immunol ; 100: 152-160, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32147374

RESUMO

Bisphenol A (BPA), a well-known environmental endocrine-disrupting chemical (EDC), could pose a great toxicity risk to aquatic organisms. The present study aimed to evaluate the underlying role of long non-coding RNAs (lncRNAs) in BPA-induced immunotoxicity in head kidney (HK) macrophages of the red common carp (Cyprinus carpio), using lncRNA-RNA sequencing (RNA-Seq). In BPA-exposed HK macrophages group, 2,095 and 1,138 differentially expressed mRNAs (DEGs) and lncRNAs (DE-lncRNAs) were obtained, respectively, compared with controls. The qRT-PCR validation results of DEGs and DE-lncRNAs were similar to the RNA-Seq results. The KEGG analysis of DEGs and target genes of DE-lncRNAs have shown that some immune-related signaling pathways, including NF-kappa B, Toll-like receptor, B-cell receptor, Jak-STAT, and Hippo signaling pathways, were severely disrupted by BPA exposure. Moreover, we observed the synergic regulation of some mRNAs involved in immune response such as two hub genes traf6 and mapk1/3 and their upstream lncRNAs in HK macrophages upon the BPA exposure or its analogue bisphenol S (BPS) exposure. This suggested the dysregulation of lncRNAs by BPA or BPS may lead to a change in the expression of hub genes, which affects the cross-talk of various signaling pathways by interaction with other network genes. In conclusion, the present study demonstrates the potential role of lncRNAs in immunotoxicity of bisphenol compounds in red common carp HK macrophages, and our results provide evidence for further exploring lncRNA's role in EDC-induced toxicity in aquatic organisms.


Assuntos
Compostos Benzidrílicos/toxicidade , Imunotoxinas/toxicidade , Macrófagos/efeitos dos fármacos , Fenóis/toxicidade , RNA Longo não Codificante/genética , Animais , Carpas/imunologia , Células Cultivadas , Redes Reguladoras de Genes , Rim Cefálico/citologia , Rim Cefálico/efeitos dos fármacos , Rim Cefálico/imunologia , RNA Mensageiro , Análise de Sequência de RNA
15.
Fish Shellfish Immunol ; 105: 244-252, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32693160

RESUMO

Barrier-to-autointegration factor (BAF) is a highly conserved DNA binding protein that participates in a variety of biological processes such as transcription, epigenetic regulation and antiviral immunity in vertebrates. However, the function of BAF is poorly understood in crustaceans. In this study, we identified a barrier-to-autointegration factor (CqBAF) from red claw crayfish Cherax quadricarinatus, which was responsive to white spot syndrome virus (WSSV) infection. The full-length cDNA sequence of CqBAF was 544 bp, including an open reading frame of 273 bp encoding 90 amino acids, a 107 bp of 5'-Untranslated Regions (5'-UTR) and a 164 bp of 3'-UTR. Gene expression analysis showed that CqBAF was distributed in all tissues examined with the highest expression in the crayfish haematopietic tissue (Hpt), which protein expression was also significantly up-regulated by WSSV infection in Hpt cells. Furthermore, the transcripts of both an immediate early gene IE1 and a late envelope protein gene VP28 of WSSV were clearly reduced in Hpt cells after gene silencing of CqBAF. Importantly, the promoter activity of two immediate early genes of WSSV, including WSV051 and IE1, was strongly enhanced by the increased phosphorylation of CqBAF, which also facilitated the accumulation of CqBAF protein in the cytoplasm of Sf9 cells. Taken together, these data suggest that CqBAF is likely to increase the replication of WSSV by promoting the transcription of viral immediate early genes, probably regulated by phosphorylation of CqBAF, which sheds new light on the molecular mechanism of WSSV infection.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Decápodes/genética , Decápodes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Astacoidea , Sequência de Bases , Proteínas de Ligação a DNA/química , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência
16.
Yi Chuan ; 42(3): 231-235, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32217509

RESUMO

Directed evolution can be rapidly applied for engineering proteins, studying gene functions, and obtaining mutants with important agronomic traits. Recently, Caixia Gao and Jiayang Li's team from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, worked together to engineer novel saturated targeted endogenous mutagenesis editors (STEMEs), realizing in vivo directed evolution and function selection in plants. This system integrated the existing two single-base editing techniques, successfully induced C:G>T:A and A:T>G:C double-base editing in plants, and artificially evolved into herbicide-resistant rice through targeting the OsACC carboxyltransferase domain coding sequence. This new method of gene directed evolution in vivo displays great application potential in important agronomic trait screening and plant functional gene researches. Here we introduce the composition, editing efficiency, and application principle of the STEME system, and compare it with the existing directed evolution methods, so as to provide a reference for accelerating the innovation of crop germplasm resources.


Assuntos
Evolução Molecular Direcionada , Edição de Genes , Oryza/genética , Produtos Agrícolas/genética , Mutagênese
17.
Fish Shellfish Immunol ; 94: 934-943, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31600596

RESUMO

Really Interesting New Gene (RING) finger proteins are highly conserved molecules that participate in a variety of biological processes such as regulation of development, apoptosis and antiviral immunity in vertebrates. However, the functions of RING finger proteins are still poorly understood in crustaceans. Previously, we found that the transcript of a homolog of RING finger protein 152 (CqRNF152-like) was up-regulated in a differentially expressed transcriptome library of the haematopietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus upon white spot syndrome virus (WSSV) infection, which is one of the most devastating viral diseases for crustaceans like shrimp and crayfish. The full-length cDNA sequence of CqRNF152-like was then identified with 975 bp, including an ORF of 685 bp that encoded a 195 amino acids protein, a 5'- UTR of 180 bp, and a 3'-UTR with a poly (A) tail of 207 bp. The conserved domain prediction showed that CqRNF152-like contained a conserved RING-finger domain. Gene expression analysis showed that CqRNF152-like was distributed in all tissues examined and the transcript is significantly up-regulated after WSSV challenge both in vivo in Hpt tissue and in vitro in cultured Hpt cells. Furthermore, the transcripts of both an immediate early gene ie1 and a late envelope protein gene vp28 of WSSV were clearly increased in the Hpt tissues, hemocytes and cultured Hpt cells after gene silencing of CqRNF152-like, which were further proved to be significantly decreased after overloading of recombinant CqRNF152-like protein in Hpt cell cultures. Meanwhile, CqRNF152-like was found to bind with WSSV envelope protein VP28 by proteins pull-down assay. Similar to most of RNF proteins, CqRNF152-like protein sequence contained a conserved RING-finger domain and showed self-ubiquitination activity in a RING finger domain dependent manner. Taken together, CqRNF152-like is likely to function as an antiviral molecular against WSSV infection through interaction with the envelope protein VP28 in a crustacean C. quadricarinatus. This is the first report that a RING finger protein with directly antiviral functions via interaction with viral protein and self-ubiquitination activity in crustacean, which sheds new light on the molecular mechanism of WSSV infection and the control of white spot disease.


Assuntos
Astacoidea/genética , Astacoidea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/química
18.
Fish Shellfish Immunol ; 82: 421-431, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30125706

RESUMO

17α-ethinylestradiol (EE2) exerts endocrine disrupting effect and immunotoxic effect on marine animals, including modulation of hepcidin expression. The antimicrobial peptide hepcidin displays a crucial role in innate immunity in fish against invading pathogens. It is known that the transcription of hepcidin in mammals is individually regulated by many stimuli, including inflammation, iron overload, anemia or hypoxia, through several distinct molecular pathways. The canonical mechanism for endocrine disrupting effects is mediated by an estrogen receptor (ER) and estrogen responsive element (ERE), whereas the underlying mechanism for immunotoxic effect is still unclear. In this study, a hepcidin from Oryzias melastigma (OM-hep1) was found to be down-regulated upon EE2 exposure and was associated with ERα. Unlike the revealed signaling pathways for hepcidin regulation in mammals, it was revealed by promoter activity analysis that the OM-hep1 transcription was not associated with canonical immune-associated and hormone-associated regulatory elements, known as the nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), ERE and estrogen-related receptor responsive element (ERRE). Further analysis through a series of base mutations revealed a short fragment from -315 to -289 bp on the OM-hep1 promoter with high activity. This fragment was composed of a putative ERE-like element (23 bases) plus an adjacent down-streamed four bases motif GTGT. Replacement of either of the core bases (GGTCA) of ERE-like or GTGT motif showed non-activity and non-response to EE2 exposure, thus a new hepcidin-associated element named as HepERE was revealed. Evidences from electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR) assay demonstrated that the EE2-mediated down-regulation of OM-hep1 expression was associated with ERα binding to HepERE but not classical ERE. Taken together, a novel signaling pathway was revealed and the regulatory mechanism associated with the ERα and HepERE element on immunomodulation of OM-hep1 expression upon EE2 exposure was first reported here.


Assuntos
Disruptores Endócrinos/toxicidade , Etinilestradiol/toxicidade , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Hepcidinas/genética , Oryzias/genética , Poluentes Químicos da Água/toxicidade , Animais , Sequência de Bases , Proteínas de Peixes/metabolismo , Hepcidinas/metabolismo , Imunidade Inata , Masculino , Oryzias/imunologia , Oryzias/metabolismo , Elementos Reguladores de Transcrição
19.
Environ Sci Technol ; 52(2): 831-838, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29261303

RESUMO

Bisphenol S (BPS), a structural analogue of bisphenol A (BPA), has been increasingly used as a common replacement of BPA due to health concerns regarding the former. However, mounting evidence suggests that BPS has similar endocrine-disrupting effects as BPA, and likewise, its presence in the environment may pose considerable risks to ecosystems and human health. Using fish primary macrophages (fpMQs), we here evaluated the immunomodulatory effects of BPS and its mechanisms of action associated with estrogen receptors (ERs). Following BPS exposure at environmentally relevant concentrations from 0.1 to 1000 µg/L, we observed approximate concentration-dependent increases in nitric oxide and reactive oxygen species generation and total antioxidant capacity as well as the gene expression of inflammatory cytokines in fpMQs. BPS impaired phagocytic capability but enhanced fpMQ activation levels in response to lipopolysaccharide stimulation and promoted apoptosis, indicating an impact on cell functions. At a concentration of 100 µg/L, BPS and BPA showed comparable pro-inflammatory potential with both up-regulating the production of free radicals and cytokine expression; however, BPS had no significant potency with regards to inducing lipid peroxidation and apoptosis, different from BPA's effects. Moreover, BPS induced both erα and erß2 expression in fpMQs, whereas BPA induced only erα expression. This study demonstrates that, similarly to BPA, exposure to low doses of BPS significantly disturbs the immune response of fpMQs in vitro and first reveals overlapping but different roles of ERs in response to BPS and BPA.


Assuntos
Compostos Benzidrílicos , Ecossistema , Animais , Humanos , Imunomodulação , Macrófagos , Fenóis , Sulfonas
20.
Yi Chuan ; 40(12): 1112-1119, 2018 Dec 20.
Artigo em Zh | MEDLINE | ID: mdl-30559100

RESUMO

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is the third-generation genome editing tools that was developed and widely used in recent years. However, Streptococcus pyogenes Cas9 (SpCas9) in this system could only recognize NGG PAM (protospacer adjacent motif), which largely restricts the range of genome editing. The VQR (D1135V/R1335Q/T1337R) variant of SpCas9 could recognize NGAA, NGAG and NGAT PAMs in rice. However, whether VQR variant could recognize NGAC PAM remains unclear. In this study, three low editing efficiency sites of the VQR variant, NAL1-Q1, NAL1-Q2 and LPA1-Q, were selected for genome editing using the improved CRISPR/VQR system. The improved CRISPR/VQR system effectively edited these target sites, and the gene editing efficiency was 9.75%, 43.90% and 29.26% respectively. To ensure the recognition of NGAC PAM by the improved CRISPR/VQR system, two NGAC PAM containing sites (NAL-C and GL1-C) in the NARROW LEAF 1 (NAL1) for leaf length and GLOSSY1 (GL1) genes for wax biosynthesis were selected for genome editing in rice in this study, and 57 transgenic plants were obtained. The PCR amplification and sequencing results showed that 27 plants (47.36%) had mutation in the NAL1-C site, 44 plants (77.19%) had mutation in the GL1 gene, and 26 plants (45.61%) had mutation in the NAL-C and GL1-C sites. Further analysis revealed that there were four types of mutations caused by the CRISPR/VQR system, respectively for the hybrid mutation, biallelic mutation, chimeric mutation and homozygous mutations. Among them, heterozygous mutation and biallelic mutation were dominant changes. These results indicated that the improved CRISPR/VQR system could efficiently edit the NGAC PAM sites of the rice and produce abundant mutant types. This study provides a theoretical basis for NGAC PAM editing in rice and other related plants.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes , Oryza/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA