Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941447

RESUMO

Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in two transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.

2.
PLoS Pathog ; 19(4): e1011346, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083862

RESUMO

Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.


Assuntos
Ecossistema , Phytophthora infestans , Phytophthora infestans/genética , Agrobacterium tumefaciens/genética , Virulência/genética , Mutação
3.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38037857

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) and cognitive training for patients with Alzheimer's disease (AD) can change functional connectivity (FC) within gray matter (GM). However, the role of white matter (WM) and changes of GM-WM FC under these therapies are still unclear. To clarify this problem, we applied 40 Hz rTMS over angular gyrus (AG) concurrent with cognitive training to 15 mild-moderate AD patients and analyzed the resting-state functional magnetic resonance imaging before and after treatment. Through AG-based FC analysis, corona radiata and superior longitudinal fasciculus (SLF) were identified as activated WM tracts. Compared with the GM results with AG as seed, more GM regions were found with activated WM tracts as seeds. The averaged FC, fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) of the above GM regions had stronger clinical correlations (r/P = 0.363/0.048 vs 0.299/0.108, 0.351/0.057 vs 0.267/0.153, 0.420/0.021 vs 0.408/0.025, for FC/fALFF/ReHo, respectively) and better classification performance to distinguish pre-/post-treatment groups (AUC = 0.91 vs 0.88, 0.65 vs 0.63, 0.87 vs 0.82, for FC/fALFF/ReHo, respectively). Our results indicated that rTMS concurrent with cognitive training could rewire brain network by enhancing GM-WM FC in AD, and corona radiata and SLF played an important role in this process.


Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Substância Cinzenta/patologia , Substância Branca/patologia , Estimulação Magnética Transcraniana , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Treino Cognitivo , Imageamento por Ressonância Magnética/métodos , Encéfalo
4.
BMC Biol ; 22(1): 110, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735918

RESUMO

BACKGROUND: Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS: Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS: This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.


Assuntos
Produtos Agrícolas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Óleos de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Óleos de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Nano Lett ; 24(25): 7716-7723, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38848111

RESUMO

Mixed-dimensional heterostructures integrate materials of diverse dimensions with unique electronic functionalities, providing a new platform for research in electron transport and optoelectronic detection. Here, we report a novel covalently bonded one-dimensional/two-dimensional (1D/2D) homojunction structure with robust junction contacts, which exhibits wide-spectrum (from the visible to near-infrared regions), self-driven photodetection, and polarization-sensitive photodetection capabilities. Benefiting from the ultralow dark current at zero bias voltage, the on/off ratio and detectivity of the device reach 1.5 × 103 and 3.24 × 109 Jones, respectively. Furthermore, the pronounced anisotropy of the WSe2 1D/2D homojunction is attributed to its low symmetry, enabling polarization-sensitive detection. In the absence of any external bias voltage, the device exhibits strong linear dichroism for wavelengths of 638 and 808 nm, with anisotropy ratios of 2.06 and 1.96, respectively. These results indicate that such mixed-dimensional structures can serve as attractive building blocks for novel optoelectronic detectors.

6.
Neuroimage ; 297: 120763, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39084280

RESUMO

Human brain gray matter (GM) has usually been clustered into multiple functional networks. The white matter (WM) fiber bundles are known to interconnect these networks simultaneously, engaging in numerous cognitive functions. However, the exact interconnections between GM and WM are still unclear, whether functional signals in WM rewires GM community organization remains to be explored. In this study, we divided brain functional connections into three types by using edge-centric method, including intra-GM, intra-WM and GM-WM connections, and calculated the edge community evaluation indexes for quantifying GM community engagement. The results showed that the involvement of WM significantly enhanced community entropy in the heteromodal system, while the sensory-attention system remained barely changed. In addition, delta community entropy showed a significant correlation with clinical cognitive scale. Our results suggested that WM rewired GM community organization, enhancing the community engagement of brain regions in the heteromodal system. This involvement was observed to be disrupted in disease groups. Our study revealed that considering the functional signals of GM and WM simultaneously could better understand the brain's functional organization.


Assuntos
Substância Cinzenta , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Idoso
7.
Neuroimage ; 291: 120593, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554780

RESUMO

OBJECTIVE: The conventional methods for interpreting tau PET imaging in Alzheimer's disease (AD), including visual assessment and semi-quantitative analysis of fixed hallmark regions, are insensitive to detect individual small lesions because of the spatiotemporal neuropathology's heterogeneity. In this study, we proposed a latent feature-enhanced generative adversarial network model for the automatic extraction of individual brain tau deposition regions. METHODS: The latent feature-enhanced generative adversarial network we propose can learn the distribution characteristics of tau PET images of cognitively normal individuals and output the abnormal distribution regions of patients. This model was trained and validated using 1131 tau PET images from multiple centres (with distinct races, i.e., Caucasian and Mongoloid) with different tau PET ligands. The overall quality of synthetic imaging was evaluated using structural similarity (SSIM), peak signal to noise ratio (PSNR), and mean square error (MSE). The model was compared to the fixed templates method for diagnosing and predicting AD. RESULTS: The reconstructed images archived good quality, with SSIM = 0.967 ± 0.008, PSNR = 31.377 ± 3.633, and MSE = 0.0011 ± 0.0007 in the independent test set. The model showed higher classification accuracy (AUC = 0.843, 95 % CI = 0.796-0.890) and stronger correlation with clinical scales (r = 0.508, P < 0.0001). The model also achieved superior predictive performance in the survival analysis of cognitive decline, with a higher hazard ratio: 3.662, P < 0.001. INTERPRETATION: The LFGAN4Tau model presents a promising new approach for more accurate detection of individualized tau deposition. Its robustness across tracers and races makes it a potentially reliable diagnostic tool for AD in practice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/patologia , Tomografia por Emissão de Pósitrons/métodos
8.
Antimicrob Agents Chemother ; : e0095924, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171918

RESUMO

Helicobacter pylori (H. pylori) is closely associated with the diseases such as gastric sinusitis, peptic ulcers, and gastric adenocarcinoma. Its drug resistance is very severe, and new antibiotics are urgently needed. Nine comfrey compounds were screened by antimicrobial susceptibility testing, among which deoxyshikonin had the best inhibitory effect, with a minimum inhibitory concentration (MIC) of 0.5-1 µg/mL. In addition, deoxyshikonin also has a good antibacterial effect in an acidic environment, it is highly safe, and H. pylori does not readily develop drug resistance. Through in vivo experiments, it was proven that deoxyshikonin (7 mg/kg) had a beneficial therapeutic effect on acute gastritis in mice infected with the multidrug-resistant H. pylori BS001 strain. After treatment with desoxyshikonin, colonization of H. pylori in the gastric mucosa of mice was significantly reduced, gastric mucosal damage was repaired, inflammatory factors were reduced, and the treatment effect was better than that of standard triple therapy. Therefore, deoxyshikonin is a promising lead drug to solve the difficulty of drug resistance in H. pylori, and its antibacterial mechanism may be to destroy the biofilm and cause an oxidation reaction.

9.
Anal Chem ; 96(11): 4647-4656, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441540

RESUMO

Telomerase is a basic reverse transcriptase that maintains the telomere length in cells, and accurate and specific sensing of telomerase in living cells is critical for medical diagnostics and disease therapeutics. Herein, we demonstrate for the first time the construction of an enzymatically controlled DNA nanomachine with endogenous apurinic/apyrimidinic endonuclease 1 (APE1) as a driving force for one-step imaging of telomerase in living cells. The DNA nanomachine is designed by rational engineering of substrate probes and reporter probes embedded with an enzyme-activatable site (i.e., AP site) and their subsequent assembly on a gold nanoparticle (AuNP). Upon recognition and cleavage of the AP site in the substrate probe by APE1, the loop of the substrate probe unfolds, exposing telomeric primer (TP) with the 3'-OH end. Subsequently, the TP is elongated by telomerase at the 3'-OH end to generate a long telomeric product. The resultant telomeric product acts as a swing arm that can hybridize with a reporter probe to initiate the APE1-powered walking reaction, ultimately generating a significantly enhanced fluorescence signal. Notably, endogenous APE1 is used as the driving force of the DNA nanomachine, avoiding the introduction of exogenous auxiliary cofactors into the cellular microenvironment. Owing to the high kinetics and high amplification efficiency of the APE1-powered DNA nanomachine, this strategy enables one-step sensitive sensing of telomerase in vitro and in vivo. It can successfully discriminate telomerase activity between cancer cells and normal cells, screen telomerase inhibitors, and monitor the variations of telomerase activity in living cells, offering a prospective platform for molecular diagnostics and drug discovery.


Assuntos
Nanopartículas Metálicas , Telomerase , Humanos , Telomerase/metabolismo , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Células HeLa , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
10.
Hum Brain Mapp ; 45(7): e26689, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703095

RESUMO

Tau pathology and its spatial propagation in Alzheimer's disease (AD) play crucial roles in the neurodegenerative cascade leading to dementia. However, the underlying mechanisms linking tau spreading to glucose metabolism remain elusive. To address this, we aimed to examine the association between pathologic tau aggregation, functional connectivity, and cascading glucose metabolism and further explore the underlying interplay mechanisms. In this prospective cohort study, we enrolled 79 participants with 18F-Florzolotau positron emission tomography (PET), 18F-fluorodeoxyglucose PET, resting-state functional, and anatomical magnetic resonance imaging (MRI) images in the hospital-based Shanghai Memory Study. We employed generalized linear regression and correlation analyses to assess the associations between Florzolotau accumulation, functional connectivity, and glucose metabolism in whole-brain and network-specific manners. Causal mediation analysis was used to evaluate whether functional connectivity mediates the association between pathologic tau and cascading glucose metabolism. We examined 22 normal controls and 57 patients with AD. In the AD group, functional connectivity was associated with Florzolotau covariance (ß = .837, r = 0.472, p < .001) and glucose covariance (ß = 1.01, r = 0.499, p < .001). Brain regions with higher tau accumulation tend to be connected to other regions with high tau accumulation through functional connectivity or metabolic connectivity. Mediation analyses further suggest that functional connectivity partially modulates the influence of tau accumulation on downstream glucose metabolism (mediation proportion: 49.9%). Pathologic tau may affect functionally connected neurons directly, triggering downstream glucose metabolism changes. This study sheds light on the intricate relationship between tau pathology, functional connectivity, and downstream glucose metabolism, providing critical insights into AD pathophysiology and potential therapeutic targets.


Assuntos
Doença de Alzheimer , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Rede Nervosa , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Masculino , Feminino , Idoso , Proteínas tau/metabolismo , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Glucose/metabolismo , Conectoma , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Idoso de 80 Anos ou mais
11.
Hum Brain Mapp ; 45(4): e26647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488448

RESUMO

Parkinson's disease (PD) patients exhibit deficits in primary sensorimotor and higher-order executive functions. The gradient reflects the functional spectrum in sensorimotor-associated areas of the brain. We aimed to determine whether the gradient is disrupted in PD patients and how this disruption is associated with treatment outcome. Seventy-six patients (mean age, 59.2 ± 12.4 years [standard deviation], 44 women) and 34 controls participants (mean age, 58.1 ± 10.0 years [standard deviation], 19 women) were evaluated. We explored functional and structural gradients in PD patients and control participants. Patients were followed during 2 weeks of multidisciplinary intensive rehabilitation therapy (MIRT). The Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) was administered to patients before and after treatment. We investigated PD-related alterations in the principal functional and structural gradients. We further used a support vector machine (SVM) and correlation analysis to assess the classification ability and treatment outcomes related to PD gradient alterations, respectively. The gradients showed significant differences between patients and control participants, mainly in somatosensory and visual networks involved in primary function, and higher-level association networks (dorsal attentional network (DAN) and default mode network (DMN)) related to motor control and execution. On the basis of the combined functional and structural gradient features of these networks, the SVM achieved an accuracy of 91.2% in discriminating patients from control participants. Treatment reduced the gradient difference. The altered gradient exhibited a significant correlation with motor improvement and was mainly distributed across the visual network, DAN and DMN. This study revealed damage to gradients in the brain characterized by sensorimotor and executive control deficits in PD patients. The application of gradient features to neurological disorders could lead to the development of potential diagnostic and treatment markers for PD.


Assuntos
Doença de Parkinson , Córtex Sensório-Motor , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética , Função Executiva , Mapeamento Encefálico
12.
Small ; 20(2): e2304311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697695

RESUMO

Due to the increased integration and miniaturization of electronic devices, traditional electronic packaging materials, such as epoxy resin (EP), cannot solve electromagnetic interference (EMI) in electronic devices. Thus, the development of multifunctional electronic packaging materials with superior electromagnetic wave absorption (EMA), high heat dissipation, and flame retardancy is critical for current demand. This study employs an in-situ growth method to load layered double hydroxides (LDH) onto transition metal carbides (MXene), synthesizing a novel composite material (MXene@LDH). MXene@LDH possesses a sandwich structure and exhibits excellent EMA performance, thermal conductivity, and flame retardancy. By adjusting the load of LDH, under the synergistic effect of multiple factors, such as dielectric and polarization losses, this work achieves an EMA material with a remarkable minimum reflection loss (RL) of -52.064 dB and a maximum effective absorption bandwidth (EAB) of 4.5 GHz. Furthermore, MXene@LDH emerges a bridging effect in EP, namely MXene@LDH/EP, leading to a 118.75% increase in thermal conductivity compared to EP. Simultaneously, MXene@LDH/EP contributes to the enhanced flame retardancy compared to EP, resulting in a 46.5% reduction in the total heat release (THR). In summary, this work provides a promising candidate advanced electronic packaging material for high-power density electronic packaging.

13.
Small ; 20(13): e2308688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946695

RESUMO

Lymph node metastasis (LNM) is a significant barrier to the prognosis of patients with gastric cancer (GC). Helicobacter pylori (H. pylori)-positive GC patients experience a higher rate of LNM than H. pylori-negative GC patients. However, the underlying mechanism remains unclear. Based on the findings of this study, H. pylori-positive GC patients have greater lymphangiogenesis and lymph node immunosuppression than H. pylori-negative GC patients. In addition, miR-1246 is overexpressed in the plasma small extracellular vesicles (sEVs) of H. pylori-positive GC patients, indicating a poor prognosis. Functionally, sEVs derived from GC cells infected with H. pylori deliver miR-1246 to lymphatic endothelial cells (LECs) and promote lymphangiogenesis and lymphatic remodeling. Mechanistically, miR-1246 suppresses GSK3ß expression and promotes ß-Catenin and downstream MMP7 expression in LECs. miR-1246 also stabilizes programmed death ligand-1 (PD-L1) by suppressing GSK3ß and induces the apoptosis of CD8+ T cells. Overall, miR-1246 in plasma sEVs may be a novel biomarker and therapeutic target in GC-LNM.


Assuntos
Vesículas Extracelulares , Helicobacter pylori , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Linfangiogênese , Células Endoteliais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Glicogênio Sintase Quinase 3 beta , MicroRNAs/genética , Vesículas Extracelulares/metabolismo
14.
Small ; 20(25): e2308724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229571

RESUMO

In future information storage and processing, magnonics is one of the most promising candidates to replace traditional microelectronics. Yttrium iron garnet (YIG) films with perpendicular magnetic anisotropy (PMA) have aroused widespread interest in magnonics. Obtaining strong PMA in a thick YIG film with a small lattice mismatch (η) has been fascinating but challenging. Here, a novel strategy is proposed to reduce the required minimum strain value for producing PMA and increase the maximum thickness for maintaining PMA in YIG films by slight oxygen deficiency. Strong PMA is achieved in the YIG film with an η of only 0.4% and a film thickness up to 60 nm, representing the strongest PMA for such a small η reported so far. Combining transmission electron microscopy analyses, magnetic measurements, and a theoretical model, it is demonstrated that the enhancement of PMA physically originates from the reduction of saturation magnetization and the increase of magnetostriction coefficient induced by oxygen deficiency. The Gilbert damping values of the 60-nm-thick YIG films with PMA are on the order of 10-4. This strategy improves the flexibility for the practical applications of YIG-based magnonic devices and provides promising insights for the theoretical understanding and the experimental enhancement of PMA in garnet films.

15.
J Transl Med ; 22(1): 674, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039496

RESUMO

BACKGROUND: Preeclampsia, especially early-onset preeclampsia (EO-PE), is a pregnancy complication that has serious consequences for the health of both the mother and the fetus. Although abnormal placentation due to mitochondrial dysfunction is speculated to contribute to the development of EO-PE, the underlying mechanisms have yet to be fully elucidated. METHODS: The expression and localization of Siglec-6 in the placenta from normal pregnancies, preterm birth and EO-PE patients were examined by RT-qPCR, Western blot and IHC. Transwell assays were performed to evaluate the effect of Siglec-6 on trophoblast cell migration and invasion. Seahorse experiments were conducted to assess the impact of disrupting Siglec-6 expression on mitochondrial function. Co-IP assay was used to examine the interaction of Siglec-6 with SHP1/SHP2. RNA-seq was employed to investigate the mechanism by which Siglec-6 inhibits mitochondrial function in trophoblast cells. RESULTS: The expression of Siglec-6 in extravillous trophoblasts is increased in placental tissues from EO-PE patients. Siglec-6 inhibits trophoblast cell migration and invasion and impairs mitochondrial function. Mechanismly, Siglec-6 inhibits the activation of NF-κB by recruiting SHP1/SHP2, leading to increased expression of GPR20. Notably, the importance of GPR20 function downstream of Siglec-6 in trophoblasts is supported by the observation that GPR20 downregulation rescues defects caused by Siglec-6 overexpression. Finally, overexpression of Siglec-6 in the placenta induces a preeclampsia-like phenotype in a pregnant mouse model. CONCLUSIONS: This study indicates that the regulatory pathway Siglec-6/GPR20 has a crucial role in regulating trophoblast mitochondrial function, and we suggest that Siglec-6 and GPR20 could serve as potential markers and targets for the clinical diagnosis and therapy of EO-PE.


Assuntos
Movimento Celular , Mitocôndrias , Pré-Eclâmpsia , Receptores Acoplados a Proteínas G , Trofoblastos , Regulação para Cima , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Humanos , Gravidez , Feminino , Mitocôndrias/metabolismo , Regulação para Cima/genética , Trofoblastos/metabolismo , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Movimento Celular/genética , Lectinas/metabolismo , Placenta/metabolismo , Camundongos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Adulto
16.
Microb Pathog ; 194: 106825, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074517

RESUMO

Short beak and dwarfism syndrome (SBDS) is attributed to Novel Goose Parvovirus (NGPV), which has inflicted significant economic losses on farming in China. Despite its significant impact, limited research has been conducted on the pathogenesis of this disease. The SD strain, a parvovirus variant isolated from ducks in Shandong province, was identified and characterized in our study. Phylogenetic analysis and sequence comparisons confirmed the classification of the SD strain as a member of NGPV. Based on this information, we established an animal model of SBDS by inoculating Cherry Valley ducks with the SD strain. Our findings indicate that infection with the SD strain leads to a reduction in body weight, beak length, width, and tibia length. Notably, significant histopathological alterations were observed in the thymus, spleen, and intestine of the infected ducks. Furthermore, the SD strain induces bone disorders and inflammatory responses. To evaluate the impact of NGPV on intestinal homeostasis, we performed 16S rDNA sequencing and gas chromatography to analyze the composition of intestinal flora and levels of short-chain fatty acids (SCFAs) in the cecal contents. Our findings revealed that SD strain infection induces dysbiosis in cecal microbial and a decrease in SCFAs production. Subsequent analysis revealed a significant correlation between bacterial genera and the clinical symptoms in NGPV SD infected ducks. Our research providing novel insights into clinical pathology of NGPV in ducks and providing a foundation for the research of NGPV treatment targeting gut microbiota.

17.
BMC Cancer ; 24(1): 948, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095810

RESUMO

BACKGROUND: Hepatoid adenocarcinoma of the lung (HAL) is a distinctly uncommon subtype of lung adenocarcinoma (LAC), characterized by hepatoid features and an alarmingly low 5-year survival rate of approximately 8%. The scarcity of information on this condition has contributed to the absence of standardized treatment protocols, and the molecular underpinnings of its pathogenesis remain largely unexplored. To bridge these gaps, this study compiled data from 191 primary HAL patients to delineate treatment patterns, prognostic factors, and potential pathogenic mechanisms. METHODS: This study was divided into two cohorts: cohort 1, comprising 110 patients extracted from the Surveillance, Epidemiology, and End Results (SEER) database, and cohort 2, consisting of 70 patients identified through a comprehensive literature review via the PubMed, Web of Science, and Scopus databases, in addition to 11 patients from Tongji Hospital. The Cox proportional hazards regression model was employed to identify independent prognostic factors. Kaplan-Meier survival curves were generated to assess the impact of treatment modalities centered around surgery and chemotherapy. Moreover, this study evaluated the efficacy of first-line treatment regimens and conducted Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses on identified mutated genes. RESULTS: The demographic and clinical profile of HAL patients typically comprises older individuals who are smokers, with a predisposition for diagnosis at advanced disease stages, culminating in a high mortality rate. Key prognostic indicators identified included disease stage, chemotherapy and surgical interventions. The study suggests a treatment strategy that advocates chemotherapy for patients with stage IV HAL and surgery for those with non-stage IV disease. The combination of paclitaxel and platinum-based chemotherapy emerged as an efficacious first-line treatment, with the integration of immunotherapy and targeted therapies showing potential benefits. Genetic analysis underscored similarities between HAL and LAC, particularly highlighting aberrant kinase activity (serine, threonine, and tyrosine) and the activation of PI3K-Akt and MAPK signaling pathways as contributing factors to HAL pathogenesis. CONCLUSION: Despite its relatively rare occurrence, this study underscores the significance of treatment strategies and concludes probable prognostic factors. Due to limited reports, a deeper understanding of the molecular mechanisms driving tumorigenesis and progression in HAL is needed.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/mortalidade , Pessoa de Meia-Idade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/tratamento farmacológico , Idoso , Prognóstico , Programa de SEER , Adulto , Estimativa de Kaplan-Meier , Taxa de Sobrevida
18.
J Immunol ; 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36288908

RESUMO

The process of parturition is associated with inflammation within the uterine tissues, and IL-1ß is a key proinflammatory cytokine involved. Autophagy is emerging as an important pathway to remove redundant cellular components. However, it is not known whether IL-1ß employs the autophagy pathway to degrade collagen, thereby participating in membrane rupture at parturition. In this study, we investigated this issue in human amnion. Results showed that IL-1ß levels were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture, which was accompanied by decreased abundance of COL1A1 and COL1A2 protein but not their mRNA, the two components of collagen I. Consistently, IL-1ß treatment of cultured primary human amnion fibroblasts reduced COL1A1 and COL1A2 protein but not their mRNA abundance along with increased abundance of autophagy activation markers, including the microtubule-associated protein L chain 3ß II/I ratio and autophagy-related 7 (ATG7) in the cells. The reduction in COL1A1 and COL1A2 protein abundance induced by IL-1ß could be blocked by the lysosome inhibitor chloroquine or small interfering RNA-mediated knockdown of ATG7 or ER-phagy receptor FAM134C, suggesting that FAM134C-mediated ER-phagy was involved in IL-1ß-induced reduction in COL1A1 and COL1A2 protein in amnion fibroblasts. Consistently, levels of L chain 3ß II/I ratio, ATG7, and FAM134C were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture. Conclusively, increased IL-1ß abundance in human amnion may stimulate ER-phagy-mediated COL1A1 and COL1A2 protein degradation in amnion fibroblasts, thereby participating in membrane rupture at parturition.

19.
J Immunol ; 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36426987

RESUMO

The process of parturition is associated with inflammation within the uterine tissues, and IL-1ß is a key proinflammatory cytokine involved. Autophagy is emerging as an important pathway to remove redundant cellular components. However, it is not known whether IL-1ß employs the autophagy pathway to degrade collagen, thereby participating in membrane rupture at parturition. In this study, we investigated this issue in human amnion. Results showed that IL-1ß levels were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture, which was accompanied by decreased abundance of COL1A1 and COL1A2 protein but not their mRNA, the two components of collagen I. Consistently, IL-1ß treatment of cultured primary human amnion fibroblasts reduced COL1A1 and COL1A2 protein but not their mRNA abundance along with increased abundance of autophagy activation markers, including the microtubule-associated protein L chain 3ß II/I ratio and autophagy-related 7 (ATG7) in the cells. The reduction in COL1A1 and COL1A2 protein abundance induced by IL-1ß could be blocked by the lysosome inhibitor chloroquine or small interfering RNA-mediated knockdown of ATG7 or ER-phagy receptor FAM134C, suggesting that FAM134C-mediated ER-phagy was involved in IL-1ß-induced reduction in COL1A1 and COL1A2 protein in amnion fibroblasts. Consistently, levels of L chain 3ß II/I ratio, ATG7, and FAM134C were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture. Conclusively, increased IL-1ß abundance in human amnion may stimulate ER-phagy-mediated COL1A1 and COL1A2 protein degradation in amnion fibroblasts, thereby participating in membrane rupture at parturition.

20.
Childs Nerv Syst ; 40(7): 2245-2250, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38635073

RESUMO

BACKGROUND: Craniopharyngioma is a common intracranial tumour in children. Clinical manifestations are related to hypothalamic/pituitary deficiencies, visual impairment, and increased intracranial pressure. Defects in pituitary function cause shortages of growth hormone, gonadotropin, corticotropin, thyrotropin, and vasopressin, resulting in short stature, delayed puberty, feebleness, lethargy, polyuria, etc. However, manifestations involving precocious puberty (PP) are rare. CASE REPORT: In both patients, surgical resection was performed after the diagnosis of craniopharyngioma, and breast development occurred postoperatively at one month in one patient and at one year and three months in the other patient. Central precocious puberty (CPP) was diagnosed via relevant examinations. Leuprorelin was injected subcutaneously every 28 days, and changes in height, weight, bone age, gonadal ultrasound and sex hormones were recorded. During the follow-up of the two children, the sex hormone levels were significantly reduced, and significant acceleration in bone age was not observed. CONCLUSIONS: CPP was induced by craniopharyngioma surgery, and treatment with gonadotropin-releasing hormone analogues (GnRHa) inhibited sexual development and bone age progression. More attention should be given to monitoring for CPP during long-term follow-up of craniopharyngiomas in the clinic.


Assuntos
Craniofaringioma , Neoplasias Hipofisárias , Puberdade Precoce , Humanos , Craniofaringioma/cirurgia , Craniofaringioma/complicações , Leuprolida/uso terapêutico , Neoplasias Hipofisárias/cirurgia , Neoplasias Hipofisárias/complicações , Complicações Pós-Operatórias/etiologia , Puberdade Precoce/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA