RESUMO
Microbial communities inhabit spatial architectures that divide a global environment into isolated or semi-isolated local environments, which leads to the partitioning of a microbial community into a collection of local communities. Despite its ubiquity and great interest in related processes, how and to what extent spatial partitioning affects the structures and dynamics of microbial communities are poorly understood. Using modeling and quantitative experiments with simple and complex microbial communities, we demonstrate that spatial partitioning modulates the community dynamics by altering the local interaction types and global interaction strength. Partitioning promotes the persistence of populations with negative interactions but suppresses those with positive interactions. For a community consisting of populations with both positive and negative interactions, an intermediate level of partitioning maximizes the overall diversity of the community. Our results reveal a general mechanism underlying the maintenance of microbial diversity and have implications for natural and engineered communities.
Assuntos
MicrobiotaRESUMO
Metal-organic frameworks (MOFs) are emerging as promising candidates for electrochemical glucose sensing owing to their ordered channels, tunable chemistry, and atom-precision metal sites. Herein, the efficient nonenzymatic electrochemical glucose sensing is achieved by taking advantage of Ni(II)-based metal-organic frameworks (Ni(II)-MOFs) and acquiring the ever-reported fastest response time. Three Ni(II)-MOFs ({[Ni6L2(H2O)26]4H2O}n (CTGU-33), {Ni(bib)1/2(H2L)1/2(H2O)3}n (CTGU-34), {Ni(phen)(H2L)1/2(H2O)2}n (CTGU-35)) have been synthesized for the first time, which use benzene-1,2,3,4,5,6-hexacarboxylic acid (H6L) as an organic ligand and introduce 1,4-bis(1-imidazoly)benzene (bib) or 1,10-phenanthroline (phen) as spatially auxiliary ligands. Bib and phen convert the coordination mode of CTGU-33, affording structural dimensions from 2D of CTGU-33 to 3D of CTGU-34 or 1D of CTGU-35. By tuning the dimension of the skeleton, CTGU-34 with 3D interconnected channels exhibits an ultrafast response of less than 0.4 s, which is superior to the existing nonenzymatic electrochemical sensors. Additionally, a low detection limit of 0.12 µM (S/N = 3) and a high sensitivity of 1705 µA mM-1 cm-2 are simultaneously achieved. CTGU-34 further showcases desirable anti-interference and cycling stability, which demonstrates a promising application prospect in the real-time detection of glucose.
RESUMO
Ultrathin covalent organic framework (COF) membranes are urgently demanded in molecular/ionic separations. Herein, we reported an electrochemical interfacial polymerization strategy to fabricate ultrathin COF membranes with thickness of 85â nm, by actively manipulate self-healing effect and self-inhibiting effect. The resulting COF membrane exhibited superior performance in brine desalination with the permeation flux of 92â kg m-2 h-1 and the rejection of 99.96 %. Our electrochemical interfacial polymerization strategy enriches the fabrication approach of COF membranes and facilitates the rational design of ultrathin membranes.
RESUMO
Molecular separations that enable selective transport of target molecules from gas and liquid molecular mixtures, such as CO2 capture, olefin/paraffin separations, and organic solvent nanofiltration, represent the most energy sensitive and significant demands. Membranes are favored for molecular separations owing to the advantages of energy efficiency, simplicity, scalability, and small environmental footprint. A number of emerging microporous organic materials have displayed great potential as building blocks of molecular separation membranes, which not only integrate the rigid, engineered pore structures and desirable stability of inorganic molecular sieve membranes, but also exhibit a high degree of freedom to create chemically rich combinations/sequences. To gain a deep insight into the intrinsic connections and characteristics of these microporous organic material-based membranes, in this review, for the first time, we propose the concept of organic molecular sieve membranes (OMSMs) with a focus on the precise construction of membrane structures and efficient intensification of membrane processes. The platform chemistries, designing principles, and assembly methods for the precise construction of OMSMs are elaborated. Conventional mass transport mechanisms are analyzed based on the interactions between OMSMs and penetrate(s). Particularly, the 'STEM' guidelines of OMSMs are highlighted to guide the precise construction of OMSM structures and efficient intensification of OMSM processes. Emerging mass transport mechanisms are elucidated inspired by the phenomena and principles of the mass transport processes in the biological realm. The representative applications of OMSMs in gas and liquid molecular mixture separations are highlighted. The major challenges and brief perspectives for the fundamental science and practical applications of OMSMs are tentatively identified.
RESUMO
Covalent organic framework (COF) materials have been considered as disruptive membrane materials for gas separation. The dominant one-step method for COF nanosheet synthesis often suffers from coupling among polymerization, assembly and crystallization processes. Herein, we propose a two-step method comprising a framework assembly step and functional group switching step to synthesize COF nanosheets and the corresponding COF membranes. In the first step, the pristine COF-316 nanosheets bearing cyano groups are prepared via interfacial polymerization. In the second step, the cyano groups in COF-316 nanosheets were switched into amidoxime groups or carboxyl groups. Through the vacuum-assisted self-assembly method, the COF nanosheets were fabricated into membranes with a thickness below 100 nm. Featuring numerous mass transport channels and homogeneous distribution of functional groups, the amidoxime-modified COF-316 membrane demonstrated excellent separation performance, with a permeance above 500 GPU and a CO2/N2 selectivity above 50. The two-step method may inspire the rational design and fabrication of organic framework membranes.
RESUMO
Aqueous two-phase system features with ultralow interfacial tension and thick interfacial region, affording unique confined space for membrane assembly. Here, for the first time, an aqueous two-phase interfacial assembly method is proposed to fabricate covalent organic framework (COF) membranes. The aqueous solution containing polyethylene glycol and dextran undergoes segregated phase separation into two water-rich phases. By respectively distributing aldehyde and amine monomers into two aqueous phases, a series of COF membranes are fabricated at water-water interface. The resultant membranes exhibit high NaCl rejection of 93.0-93.6% and water permeance reaching 1.7-3.7 L m-2 h-1 bar-1, superior to most water desalination membranes. Interestingly, the interfacial tension is found to have pronounced effect on membrane structures. The appropriate interfacial tension range (0.1-1.0 mN m-1) leads to the tight and intact COF membranes. Furthermore, the method is extended to the fabrication of other COF and metal-organic polymer membranes. This work is the first exploitation of fabricating membranes in all-aqueous system, confering a green and generic method for advanced membrane manufacturing.
RESUMO
Covalent organic frameworks (COF), with rigid, highly ordered and tunable structures, can actively manipulate the synergy of entropic selectivity and enthalpic selectivity, holding great potential as next-generation membrane materials for ion separations. Here, we demonstrated the efficient separation of monovalent cations by COF membrane. The channels of COF membrane are decorated with three different kinds of acid groups. A concept of confined cascade separation was proposed to elucidate the separation process. The channels of COF membrane comprised two kinds of domains, acid-domains and acid-free-domains. The acid-domains serve as confined stages, rendering high selectivity, while the acid-free-domains preserve the pristine channel size, rendering high permeation flux. A set of descriptors of stage properties were designed to elucidate their effect on selective ion transport behavior. The resulting COF membrane acquired high ion separation performances, with an actual selectivity of 4.2-4.7 for K+/Li+ binary mixtures and an ideal selectivity of ~13.7 for K+/Li+.
RESUMO
Antibiotic resistance is one of the biggest threats to public health. The rapid emergence of resistant bacterial pathogens endangers the efficacy of current antibiotics and has led to increasing mortality and economic burden. This crisis calls for more rapid and accurate diagnosis to detect and identify pathogens, as well as to characterize their response to antibiotics. Building on this foundation, treatment options also need to be improved to use current antibiotics more effectively and develop alternative strategies that complement the use of antibiotics. We here review recent developments in diagnosis and treatment of bacterial pathogens with a focus on quantitative biology and synthetic biology approaches.