RESUMO
Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials.
RESUMO
Reducing the dark current of photodetectors is an important strategy for enhancing the detection sensitivity, but hampered by the manufacturing cost due to the need for controlling the complex material composition and processing intricate interface. This study reports a new single-component photochromic semiconductor, [(HDMA)4(Pb3Br10)(PhSQ)2]n (1, HDMA = dimethylamine cation, PhSQ = 1-(4-sulfophenyl)-4,4'-bipyridinium), by introducing a redox-active monosubstituted viologen zwitterion into inorganic semiconducting skeleton. It features yellow to green coloration after UV irradiation with the sharply dropping intrinsic conductivity of 14.6-fold, and the photodetection detection sensitivity gain successfully doubles. The reason of decreasing conductivity originates from the increasing the band gap of the inorganic semiconducting component and formation of Frenkel excitons with strong Coulomb interactions, thereby decreasing the concentration of thermally excited intrinsic carriers.
RESUMO
Given its exceptional theoretical energy density (over 2000 Wh kg-1), lithium||carbon fluoride (Li||CFx) battery has garnered global attention. N-methylpyrrolidone (NMP)-based electrolyte is regarded as one promising candidate for tremendously enhancing the energy density of Li||CFx battery, provided self-discharge challenges can be resolved. This study successfully achieves a low self-discharge (LSD) and desirable electrochemical performance in Li||CFx batteries at high temperatures by utilizing NMP as the solvent and incorporating additional ingredients, including vinylene carbonate additive, as well as the dual-salt systems formed by LiBF4 with three different Li salts, namely lithium bis(oxalato)borate, lithium difluoro(oxalato)borate, and LiNO3. The experimental results unfold that the proposed methods not only minimize aluminum current collector corrosion, but also effectively passivate the Li metal anode. Among them, LiNO3 exhibits the most pronounced effect that achieves an energy density of ≈2400 Wh kg-1 at a current density of 10 mA g-1 at 30 °C, nearly 0% capacity-fade rate after 300 h of storage at 60 °C, and the capability to maintain a stable open-circuit voltage over 4000 h. This work provides a distinctive perspective on how to realize both high energy density and LSD rates at high temperature of Li||CFx battery.
RESUMO
Glasses, unlike crystals, are intrinsically brittle due to the absence of microstructure-controlled toughening, creating fundamental constraints for their technological applications. Consequently, strategies for toughening glasses without compromising their other advantageous properties have been long sought after but elusive. Here we report exceptional toughening in oxide glasses via paracrystallization, using aluminosilicate glass as an example. By combining experiments and computational modelling, we demonstrate the uniform formation of crystal-like medium-range order clusters pervading the glass structure as a result of paracrystallization under high-pressure and high-temperature conditions. The paracrystalline oxide glasses display superior toughness, reaching up to 1.99 ± 0.06 MPa m1/2, surpassing any other reported bulk oxide glasses, to the best of our knowledge. We attribute this exceptional toughening to the excitation of multiple shear bands caused by a stress-induced inverse transformation from the paracrystalline to amorphous states, revealing plastic deformation characteristics. This discovery presents a potent strategy for designing highly damage-tolerant glass materials and emphasizes the substantial influence of atomic-level structural variation on the properties of oxide glasses.
RESUMO
Polyethylene oxide (PEO)-based solid-state batteries hold great promise as the next-generation batteries with high energy density and high safety. However, PEO-based electrolytes encounter certain limitations, including inferior ionic conductivity, low Li+ transference number, and poor mechanical strength. Herein, we aim to simultaneously address these issues by utilizing one-dimensional zwitterionic cellulose nanofiber (ZCNF) as fillers for PEO-based electrolytes using a simple aqueous solution casting method. Multiple characterizations and theoretical calculations demonstrate that the unique zwitterionic structure imparts ZCNF with various functions, such as disrupting PEO crystallization, dissociating lithium salts, anchoring anions through cationic groups, accelerating Li+ migration by anionic groups, as well as its inherent reinforcement effect. As a result, the prepared PL-ZCNF electrolyte exhibits remarkable ionic conductivity (5.37×10-4â S cm-1) and Li+ transference number (0.62) at 60 °C without sacrificing mechanical strength (9.2â MPa), together with high critical current density of 1.1â mA cm-2. Attributed to these merits of PL-ZCNF, the LiFePO4|PL-ZCNF|Li solid-state full-cell delivers exceptional rate capability and cycling performance (900â cycles at 5â C). Notably, the assembled pouch-cell can maintain steady operation over 1000â cycles with an impressive 93.7 % capacity retention at 0.5â C and 60 °C, highlighting the great potential of PL-ZCNF for practical applications.
RESUMO
Efficient removal of acetylene (C2H2) impurities from polymer-grade ethylene (C2H4) in a simple, clean manner remains a challenging goal in industry. The use of porous materials such as metal-organic frameworks (MOFs) is promising for this aim but the acquisition of high purification performance is still hindered by few knowledge on the purification process because the previous conclusions were derived basically from the non-breakthrough tests or ignored the influence of structural difference (crystal structure, morphology, or defect). Here we propose an unprecedented in situ stimulus response strategy to minimize the influence of structural difference, obtain the gas-loading crystal structures of the same MOF before and after light or heat stimulation, directly observe the evolution of pore charge distribution and pore×××gas interactions under light/heat induction, and finally summarizes the favorable structure for highly efficient purification of C2H4. This study opens a new route to understand the relationship between the structure and separation performance for porous materials.
RESUMO
The study of facile-synthesis and low-cost X-ray scintillators with high light yield, low detection limit and high X-ray imaging resolution plays a vital role in medical and industrial imaging fields. However, the optimal balance between X-ray absorption, decay lifetime and excitonic utilization efficiency of scintillators to achieve high-resolution imaging is extremely difficult due to the inherent contradiction. Here two thermally activated delayed fluorescence (TADF)-actived coinage-metal clusters M6 S6 L6 (M=Ag or Cu) were synthesized by simple solvothermal reaction, where the cooperation of heavy atom-rich character and TADF mechanism supports strong X-ray absorption and rapid luminescent collection of excitons. Excitingly, Ag6 S6 L6 (SC-Ag) displays a high photoluminescence quantum yield of 91.6 % and scintillating light yield of 17420â photons MeV-1 , as well as a low detection limit of 208.65â nGy s-1 that is 26â times lower than the medical standard (5.5â µGy s-1 ). More importantly, a high X-ray imaging resolution of 16â lp/mm based on SC-Ag screen is demonstrated. Besides, rigid core skeleton reinforced by metallophilicity endows clusters M6 S6 L6 strong resistance to humidity and radiation. This work provides a new view for the design of efficient scintillators and opens the research door for silver clusters in scintillation application.
RESUMO
Hard carbons are deemed as promising anode materials for high-performance potassium-ion battery, but their commercialization is still hindered by the insufficient K+ transfer kinetics and poor potassiophilicity. Herein, these issues are addressed by improving the wettability of hard carbon, which can be achieved by the introduction of open mesochannels. A series of such hollow mesoporous carbon capsules with different dimensions are synthesized, which exhibit markedly enhanced wettability with electrolyte compared to the microporous counterparts. Various characterizations confirm its effects on promoting the kinetics and potassiophilicity of as-synthesized carbons, which can be additionally improved by S-doping. As a result, the 2D mesoporous carbon anode exhibits excellent rate capability (122.2 mAh g-1 at 4 A g-1 ), high reversible capacity (396.6 mAh g-1 at 0.1 A g-1 after 200 cycles), and outstanding cycling stability (197.0 mAh g-1 at 2 A g-1 after 1400 cycles). In addition, the hollow mesoporous architecture can effectively buffer the volume expansion and thus stabilize the carbon anodes, as visualized by in situ transmission electron microscopy. This work provides new insight for enhanced K+ storage performance from the perspective of anode wettability with electrolyte, as well as a universal anode design that combines mesochannels architecture with heteroatom doping.
RESUMO
Pressure-stabilized high-entropy sulfide (FeCoNiCuRu)S2 (HES) is proposed as an anode material for fast and long-term stable lithium/sodium storage performance (over 85% retention after 15 000 cycles @10 A g-1 ). Its superior electrochemical performance is strongly related to the increased electrical conductivity and slow diffusion characteristics of entropy-stabilized HES. The reversible conversion reaction mechanism, investigated by ex-situ XRD, XPS, TEM, and NMR, further confirms the stability of the host matrix of HES after the completion of the whole conversion process. A practical demonstration of assembled lithium/sodium capacitors also confirms the high energy/power density and long-term stability (retention of 92% over 15 000 cycles @5 A g-1 ) of this material. The findings point to a feasible high-pressure route to realize new high-entropy materials for optimized energy storage performance.
RESUMO
Constructing 3D skeletons modified with lithiophilic seeds has proven effective in achieving dendrite-free lithium metal anodes. However, these lithiophilic seeds are mostly alloy- or conversion-type materials, and they tend to aggregate and redistribute during cycling, resulting in the failure of regulating Li deposition. Herein, we address this crucial but long-neglected issue by using intercalation-type lithiophilic seeds, which enable antiaggregation owing to their negligible volume expansion and high electrochemical stability against Li. To exemplify this, a 3D carbon-based host is built, in which ultrafine TiO2 seeds are uniformly embedded in nitrogen-doped hollow porous carbon spheres (N-HPCSs). The TiO2@N-HPCSs electrode exhibits superior Coulombic efficiency, high-rate capability, and long-term stability when evaluated as compertitive anodes for Li metal batteries. Furthermore, the superiority of intercalation-type seeds is comprehensively revealed through controlled experiments by various in situ/ex situ electron and optical microscopies, which highlights the excellent structural stability and lithiophilicity of TiO2 nanoseeds upon repeated cycling.
Assuntos
Lítio , Sementes , Carbono , EletrodosRESUMO
Detection of oxygen though color change is highly desirable for rapid qualitative analysis like the case of pH test papers. This work demonstrates 3O2-assisted photoinduced color change of a new photochromic coordination compound [Zn(4-aminopyridine)2Cl2] (ZnaPyCl), which represents the first photochromic compound with a selective 3O2 detection ability. The compound underwent photoinduced intraligand charge separation and formed a stable diradical-like triplet species in the solid state or in frozen solution, accompanied by conversion of triplet oxygen to singlet oxygen.
RESUMO
Pressure-induced sp2-to-sp3 transitions in graphite have been studied for decades by experiments and simulations. In general, pressures of 15-18 GPa are needed to initiate structural transitions in graphite at room temperature, and the high-pressure phases are usually unquenchable, as evidenced by in situ resistivity and optical transmittance measurements, X-ray diffraction (XRD), and inelastic X-ray scattering (IXS). However, our in situ Raman results show that the onset transition pressure can be as low as 9.7 GPa when using the methanol-ethanol-water (MEW) mixture as the pressure-transmitting medium (PTM), indicated by an additional GD Raman peak caused by the sp3 bonding between adjacent graphite layers. Moreover, using a combination of XRD, Raman, X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM), we show that a small amount of sp3 bonds associated with a unique feature of cross stacking are present in the recovered samples. Our findings will be useful to understand the intricate structural transitions in graphite-like materials under compression.
RESUMO
Charge-separated states with a lifetime scale of seconds or longer not only favor studies using various steady-state analysis techniques but are important for light-energy conversion and other applications. Through a steric-hindrance-induced method, unprecedented photoinduced generation of a partially charge separated (PCS) state with a lifetime of days has been detected in the "visual" mode during the decay of excited states to a commonly observed fully charge separated (FCS) state for viologen analogues. One pale yellow 4,4'-bipyridine-based metalloviologen compound, with an interannular dihedral angle of 1.84° in 4,4'-bipyridine, directly decays to the purple FCS state after photoexcitation. The other pale yellow compound, with a similar coordination framework but a larger interannular dihedral angle (33.74°), changes first to a yellow PCS state and then relaxes slowly (in the dark in Ar, ca. 2 days; 70 °C in Ar, ca. 1 h) to the purple FCS state. The two-step coloration phenomenon is unprecedented for viologen compounds and their analogues and also rather rare for other photochromic species. EPR and Raman data reveal that photoinduced charge separation first generates univalent zinc and radicals and then the received electron in Zn(I) slowly distributes further to 4,4'-bipyridine. Reduction of π-conjugation and a direct to indirect change in band gap account for the prolongation of the relaxation process and the capture of the PCS state. These findings help to understand and control decay processes of excited states and provide a potential design strategy for multicolor photochromism, light-energy conversion with high efficiency, or other applications.
RESUMO
Photoresponse ranges of commercially prevailing photoelectric semiconductors, typically Si and InGaAs, are far from fully covering the whole solar spectrum (â¼295-2500 nm), resulting in insufficient solar energy conversion or narrow wave bands for photoelectric detection. Recent studies have shown that infinite π-aggregation of viologen radicals can provide semiconductors with a photoelectric response range covering the solar spectrum. However, controlled assembly of an infinite π-aggregate is still a great challenge in material design. Through directional self-assembly of electron-transfer photoactive polycyclic ligands, two crystalline inorganic-organic hybrid photochromic viologen-based bismuth halide semiconductors, ((Me)3pytpy)[BiCl6]·2H2O [1; (Me)3pytpy = N,N',Nâ³-trimethyl-2,4,6-tris(4-pyridyl)pyridine] and ((Me)3pytpy)[Bi2Cl9]·H2O (2), have been synthesized. They represent the first series of pytpy-based photochromic compounds. After photoinduced coloration, the conductivities of both 1 and 2 increased. The radical products have electron absorption bands in the range of 200-1600 nm, exceeding that of Si. Both the conductivity and the photocurrent intensity of 2 are stronger than those of 1, due to better planarity, tighter π-stacking, and higher degrees of overlap of ((Me)3pytpy)3+ cations. This study not only provides a new design idea for synthesizing radical-based multispectral photoelectric semiconductors but also enriches the family of electron-transfer photochromic compounds.
RESUMO
A high contrast of â¼67 times, exceeding those of all known photoswitching bulk quadratic nonlinear-optical materials, has been realized in a photochromic semiconductor, by the strategy of increasing electron-transfer efficiency and self-absorption.
RESUMO
Full exploitation of graphene's superior properties requires the ability to precisely control its morphology and edge structures. We present such a structure-tailoring approach via controlled atom removal from graphene edges. With the use of a graphitic-carbon-capped tungsten nanoelectrode as a noncontact "milling" tool in a transmission electron microscope, graphene edge atoms approached by the tool tip are locally evaporated, thus allowing a freestanding graphene sheet to be tailored with high precision and flexibility. A threshold for the tip voltage of 3.6 ± 0.4 V, independent of polarity, is found to be the determining factor that triggers the controlled etching process. The dominant mechanisms involve weakening of carbon-carbon bonds through the interband excitation induced by tunneling electrons, assisted with a resistive-heating effect enhanced by high electric field, as elaborated by first-principles calculations. In addition to the precise shape and size control, this tip-based method enables fabrication of graphene edges with specific chiralities, such as "armchair" or "zigzag" types. The as-obtained edges can be further "polished" to become entirely atomically smooth via edge evaporation/reconstruction induced by in situ TEM Joule annealing. We finally demonstrate the potential of this technique for practical uses through creating a graphene-based point electron source, whose field emission characteristics can effectively be tuned via modifying its geometry.
RESUMO
Similarities in sizes, shapes, and physical properties between carbon dioxide (CO2 ) and acetylene (C2 H2 ) make it a great challenge to separate the major impurity CO2 from products in C2 H2 production. The use of porous materials is an appealing path to replace current very costly and energy-consuming technologies, such as solvent extraction and cryogenic distillation; however, high CO2 /C2 H2 uptake ratio with minor adsorption of C2 H2 at standard pressure was only unexpectedly observed in scarce examples in recent years although the related research started early at 1950s, and general design strategies to realize this aim are still absent. This work has successfully developed an efficient PIET strategy and obtained the second highest CO2 /C2 H2 adsorption ratio for porous materials in a proof-of-concept MOF with a photochromism-active bipyridinium zwitterion. An unprecedented photocontrollable gate effect, owing to change of interannular dihedral after photoinduced generation of radical species, was also observed for the first time. These findings will inspire design and synthesis of porous materials for high efficient gas adsorption and separation.
RESUMO
Metallic bismuth has drawn attention as a promising alloying anode for advanced potassium ion batteries (PIBs). However, serious volume expansion/electrode pulverization and sluggish kinetics always lead to its inferior cycling and rate properties for practical applications. Therefore, advanced Bi-based anodes via structural/compositional optimization and sur-/interface design are needed. Herein, we develop a bottom-up avenue to fabricate nanoscale Bi encapsulated in a 3D N-doped carbon nanocages (Bi@N-CNCs) framework with a void space by using a novel Bi-based metal-organic framework as the precursor. With elaborate regulation in annealing temperatures, the optimized Bi@N-CNCs electrode exhibits large reversible capacities and long-duration cyclic stability at high rates when evaluated as competitive anodes for PIBs. Insights into the intrinsic K+ -storage processes of the Bi@N-CNCs anode are put forward from comprehensive in situ characterizations.
RESUMO
2,4,6-Tri(4-pyridyl)-1,3,5-triazine (tpt) is a widely used ligand for functional coordination compounds. In this work, tpt has shown unprecedented photochromism in the crystalline state. Experimental and theoretical data has revealed that the photocoloration of tpt very likely originates from intramolecular charge separation and the formation of a triplet diradical product. This finding demonstrates a new simple, neutral photochromic molecule and endows the tpt molecule and related compounds with potential optical applications.
RESUMO
Breaking the intrinsic rule of semiconductors that conductivity increases with increase of temperature and realizing a dramatic dropping of conductivity at high temperature may arouse new intriguing applications, such as circuit overload or over-temperature protecting. This goal has now been achieved through T-type electron-transfer photochromism of one organic semiconductor assembled by intermolecular cationâ â â π interactions. Conductivity of the viologen-based model semiconductor (H2 bipy)(Hox)2 (H2 bipy=4,4'-bipyridin-1,1'-dium; ox=oxalate) increased by 2 orders of magnitude after photoinduced electron transfer (a record for photoswitchable organic semiconductors) and generation of radical cationâ â â π interactions, and fell by approximately 81 % at 100 °C through reverse electron transfer and degeneration of the radical cationâ â â π interactions. The model semiconductor has at least two different electron transfer pathways in the decoloration process.