Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571708

RESUMO

Strain-based condition evaluation has garnered as a crucial method for the structural health monitoring (SHM) of large-scale engineering structures. The use of traditional wired strain sensors becomes tedious and time-consuming due to their complex wiring operation, more workload, and instrumentation cost to collect sufficient data for condition state evaluation, especially for large-scale engineering structures. The advent of wireless and passive RFID technologies with high efficiency and inexpensive hardware equipment has brought a new era of next-generation intelligent strain monitoring systems for engineering structures. Thus, this study systematically summarizes the recent research progress of cutting-edge RFID strain sensing technologies. Firstly, this study introduces the importance of structural health monitoring and strain sensing. Then, RFID technology is demonstrated including RFID technology's basic working principle and system component composition. Further, the design and application of various kinds of RFID strain sensors in SHM are presented including passive RFID strain sensing technology, active RFID strain sensing technology, semi-passive RFID strain sensing technology, Ultra High-frequency RFID strain sensing technology, chipless RFID strain sensing technology, and wireless strain sensing based on multi-sensory RFID system, etc., expounding their advantages, disadvantages, and application status. To the authors' knowledge, the study initially provides a systematic comprehensive review of a suite of RFID strain sensing technology that has been developed in recent years within the context of structural health monitoring.

2.
Genomics ; 112(1): 286-288, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772429

RESUMO

Synteny and collinearity analysis is a standard investigative strategy done in many comparative genomic studies to understand genomic conservation and evolution. Currently, most visualization toolkits of synteny and collinearity do not emphasize the graphical representation of the results, especially the lack of extensible format on vector graphics outputs. This limitation becomes more apparent as 3rd generation sequencing brings high-throughput data, requiring relatively higher resolution for the resulting images. We developed VGSC2, the 2nd version of the web-based vector graph toolkit for genome synteny and collinearity analysis. The updated version enables four types of plots for synteny and collinearity, and three types of plots for gene family evolutionary research. Using web-based technologies, VGSC2 provides an easy-to-use user interface to display the homologous genomic result into vector graphs such as SVG, EPS, and PDF, as well as an online editor. VGSC2 is open source and freely available for use online through the web server available at http://bio.njfu.edu.cn/vgsc2.


Assuntos
Software , Sintenia , Genoma , Genômica/métodos , Família Multigênica
3.
Sensors (Basel) ; 19(15)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357660

RESUMO

Uncertainty in sensor data complicates the construction of baseline models for the measurement and forecasting (M&F) of high-speed rail (HSR) track slab deformation. Standard Gaussian process (GP) assumes a uniform noise throughout the input space. However, in the application to modelling of HSR structural health monitoring (SHM) data, this assumption can be unrealistic, because of its unique heteroscedastic uncertainty that is induced by dynamic train loading, electromagnetic interference, large temperature variation, and daily maintenance actions of railway track infrastructure. Therefore, this study firstly develops a novel online SHM system enabled by fiber Bragg grating (FBG) technology to eliminate electromagnetic interference on SHM data for continuous and long-term monitoring of track slab deformation, with the capacity of temperature self-compensation. To deal with different sources of uncertainty, the study explores Variational Heteroscedastic Gaussian Process (VHGP) approach while using variational Bayesian and Gaussian approximation for data modelling, estimation of the monitoring data uncertainty, and further data forecasting. The results demonstrate that the VHGP framework yields more robust regression results and the estimated confidence level can better depict the heteroscedastic variances of the noise in HSR data. Higher accuracy for both regression and forecasting is gained through VHGP and the position with maximum noise can be more accurately forecasted with a smooth varying confidence interval. Based on in-situ measurement data, the uncertainty levels for all sensors are estimated together with corresponding deformation profiles for the instrumented segment and three typical types of uncertainty are summarized during the M&F process of HSR track slab deformation.

4.
Materials (Basel) ; 15(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806580

RESUMO

The expansion of cracks in 3D printing concrete materials may lead to structural failure, so it is essential to monitor crack propagation development. Coda wave interferometry (CWI) has been proven to be sensitive to microcracks, however, the evolution pattern of ultrasonic coda waves during crack growth is still not clear. This paper reports a numerical study of the sensitivity and feasibility of CWI for monitoring microcrack growth in heterogeneous materials. A two-phase concrete model, which contains microcracks with different angles and lengths, was developed using the finite element analysis software ABAQUS. The relative velocity change (Δv/v) and the decorrelation coefficient (Kd) at different crack increments were quantitatively analyzed. The numerical simulation results show that coda waves are sensitive to microcrack length as well as the crack angle. The Δv/v increases linearly with the increase of the length of a single microcrack, and the Kd could be linked to the crack length quadratically. Furthermore, a quantitative functional relationship between the CWI observations (Kd, Δv/v) and the angle of the crack to the source/receiver and the relative length growth of the crack are established. In addition, the nonlinear relationship between slope and angle can be fitted with a sinusoidal function. The reported results quantitatively assess the coda wave variation pattern during crack propagation, which is important for the promotion and application of CWI technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA