Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2014: 852503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045749

RESUMO

Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

2.
Cell Discov ; 9(1): 71, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433812

RESUMO

How cells adapt their gene expression to nutritional changes remains poorly understood. Histone H3T11 is phosphorylated by pyruvate kinase to repress gene transcription. Here, we identify the protein phosphatase 1 (PP1), Glc7 as the enzyme that specifically dephosphorylates H3T11. We also characterize two novel Glc7-containing complexes and reveal their roles in regulating gene expression upon glucose starvation. Specifically, the Glc7-Sen1 complex dephosphorylates H3T11 to activate the transcription of autophagy-related genes. The Glc7-Rif1-Rap1 complex dephosphorylates H3T11 to derepress the transcription of telomere-proximal genes. Upon glucose starvation, Glc7 expression is up-regulated and more Glc7 translocates into the nucleus to dephosphorylate H3T11, leading to induction of autophagy and derepressed transcription of telomere-proximal genes. Furthermore, the functions of PP1/Glc7 and the two Glc7-containing complexes are conserved in mammals to regulate autophagy and telomere structure. Collectively, our results reveal a novel mechanism that regulate gene expression and chromatin structure in response to glucose availability.

3.
Nat Commun ; 13(1): 7526, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473858

RESUMO

The glycolytic enzyme, pyruvate kinase Pyk1 maintains telomere heterochromatin by phosphorylating histone H3T11 (H3pT11), which promotes SIR (silent information regulator) complex binding at telomeres and prevents autophagy-mediated Sir2 degradation. However, the exact mechanism of action for H3pT11 is poorly understood. Here, we report that H3pT11 directly inhibits Dot1-catalyzed H3K79 tri-methylation (H3K79me3) and uncover how this histone crosstalk regulates autophagy and telomere silencing. Mechanistically, Pyk1-catalyzed H3pT11 directly reduces the binding of Dot1 to chromatin and inhibits Dot1-catalyzed H3K79me3, which leads to transcriptional repression of autophagy genes and reduced autophagy. Despite the antagonism between H3pT11 and H3K79me3, they work together to promote the binding of SIR complex at telomeres to maintain telomere silencing. Furthermore, we identify Reb1 as a telomere-associated factor that recruits Pyk1-containing SESAME (Serine-responsive SAM-containing Metabolic Enzyme) complex to telomere regions to phosphorylate H3T11 and prevent the invasion of H3K79me3 from euchromatin into heterochromatin to maintain telomere silencing. Together, these results uncover a histone crosstalk and provide insights into dynamic regulation of silent heterochromatin and autophagy in response to cell metabolism.


Assuntos
Histonas , Sesamum , Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA