Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Breed ; 42(4): 18, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37309459

RESUMO

Using imbalanced historical yield data to predict performance and select new lines is an arduous breeding task. Genome-wide association studies (GWAS) and high throughput genotyping based on sequencing techniques can increase prediction accuracy. An association mapping panel of 227 Texas elite (TXE) wheat breeding lines was used for GWAS and a training population to develop prediction models for grain yield selection. An imbalanced set of yield data collected from 102 environments (year-by-location) over 10 years, through testing yield in 40-66 lines each year at 6-14 locations with 38-41 lines repeated in the test in any two consecutive years, was used. Based on correlations among data from different environments within two adjacent years and heritability estimated in each environment, yield data from 87 environments were selected and assigned to two correlation-based groups. The yield best linear unbiased estimation (BLUE) from each group, along with reaction to greenbug and Hessian fly in each line, was used for GWAS to reveal genomic regions associated with yield and insect resistance. A total of 74 genomic regions were associated with grain yield and two of them were commonly detected in both correlation-based groups. Greenbug resistance in TXE lines was mainly controlled by Gb3 on chromosome 7DL in addition to two novel regions on 3DL and 6DS, and Hessian fly resistance was conferred by the region on 1AS. Genomic prediction models developed in two correlation-based groups were validated using a set of 105 new advanced breeding lines and the model from correlation-based group G2 was more reliable for prediction. This research not only identified genomic regions associated with yield and insect resistance but also established the method of using historical imbalanced breeding data to develop a genomic prediction model for crop improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01287-8.

2.
Mol Ecol ; 30(3): 639-655, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33245827

RESUMO

Landscape heterogeneity can shape genetic structure and functional connectivity of populations. When this heterogeneity imposes variable costs of moving across the landscape, populations can be structured according to a pattern of "isolation by resistance" (IBR). At the same time, divergent local environmental filters can limit gene flow, creating an alternative pattern of "isolation by environment" (IBE). Here, we evaluate IBR and IBE in the insect-pollinated, biennial plant Sabatia angularis (L.) Pursh (Gentianaceae) across serpentine grasslands in the fragmented landscape of SE Pennsylvania, USA using ~4500 neutral SNP loci. Specifically, we test the extent to which radical alteration of the landscape matrix by humans has fundamentally altered the cost of movement, imprinting a pattern of IBR dictated by land use type and intensity, and the potential for IBE in relation to a gradient of heavy metal concentrations found in serpentine soil. We reveal a strong signal of IBR and a weak signal of IBE across sites, indicating the greater importance of the landscape matrix in shaping genetic structure of S. angularis populations in the study region. Based on Circuitscape and least cost path approaches, we find that both low- and high-intensity urbanization resist gene flow by orders of magnitude greater than "natural" habitats, although resistance to low-intensity urbanization weakens at larger spatial scales. While cropland presents a substantially lower barrier than urban development, cumulative human land use surrounding populations predicts within-population genetic diversity and inbreeding in S. angularis. Our results emphasize the role of forest buffers and corridors in facilitating gene flow between serpentine grassland patches and averting local extinction of plant populations.


Assuntos
Fluxo Gênico , Gentianaceae/genética , Pradaria , Ecossistema , Estruturas Genéticas , Pennsylvania
3.
Mol Ecol ; 30(16): 3948-3964, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34142394

RESUMO

As native ranges are often geographically structured, invasive species originating from a single source population only carry a fraction of the genetic diversity present in their native range. The invasion process is thus often associated with a drastic loss of genetic diversity resulting from a founder event. However, the fraction of diversity brought to the invasive range may vary under different invasion histories, increasing with the size of the propagule, the number of reintroduction events, and/or the total genetic diversity represented by the various source populations in a multiple-introduction scenario. In this study, we generated a SNP data set for the invasive termite Reticulitermes flavipes from 23 native populations in the eastern United States and six introduced populations throughout the world. Using population genetic analyses and approximate Bayesian computation random forest, we investigated its worldwide invasion history. We found a complex invasion pathway with multiple events out of the native range and bridgehead introductions from the introduced population in France. Our data suggest that extensive long-distance jump dispersal appears common in both the native and introduced ranges of this species, probably through human transportation. Overall, our results show that similar to multiple introduction events into the invasive range, admixture in the native range prior to invasion can potentially favour invasion success by increasing the genetic diversity that is later transferred to the introduced range.


Assuntos
Genética Populacional , Espécies Introduzidas , Isópteros , Animais , Teorema de Bayes , Variação Genética , Isópteros/genética , Repetições de Microssatélites , Estados Unidos
4.
Genomics ; 111(6): 1517-1528, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30366041

RESUMO

Gene expression has been widely used in functional genomics research; however, the gene expressions quantified with different methods have been frequently inconsistent, thus challenging the conclusions from such research. Here we have addressed this issue, while taking into account RNA alternative splicing. We found that when a gene was subjected to RNA alternative splicing, it was impossible or difficult to properly quantify the expression of a transcript of the gene or its overall expression using quantitative real-time PCR (qPCR), Northern hybridization, microarray, or serial analysis of gene expression. Shot-gun RNA-seq was the most proper to quantify the expression of a transcript or a gene in such cases. Moreover, the expressions of individual transcripts quantified by shot-gun RNA-seq were highly reproducible (r = 0.90-0.98) between individuals. Therefore, shot-gun or full-length RNA-seq should be the method of choice to properly quantify the expression of a transcript or a gene.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo
5.
Plant J ; 95(6): 1039-1054, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952048

RESUMO

Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence-based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome-wide recombination rate variation was mostly defined by rare alleles with small effects together explaining up to 48.6% of variation. Most QTL were additive and showed predominantly trans-acting effects. The QTL affecting the proximal COs also acted additively without increasing the frequency of distal COs. We showed that the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possible deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleterious SNPs across the genome. The identified trans-acting additive QTL can be utilized to manipulate CO frequency and distribution in the large polyploid wheat genome opening the possibility to improve the efficiency of gene pyramiding and reducing the deleterious genetic load in the low-recombining pericentromeric regions of chromosomes.


Assuntos
Poliploidia , Recombinação Genética/genética , Triticum/genética , Alelos , Mapeamento Cromossômico/métodos , Variação Genética/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
6.
Plant J ; 86(2): 195-207, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26945524

RESUMO

Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole-genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics-based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole-genome using these approaches is nearly impossible. We developed a whole-genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high-density single nucleotide polymorphism (SNP) array. At the whole-genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500 . The 7296 unique mapping bins provided a five- to eight-fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low-cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS-WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high-quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.


Assuntos
Triticum/genética , Mapeamento Cromossômico , Mapeamento de Sequências Contíguas , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Mapeamento de Híbridos Radioativos , Análise de Sequência de DNA
7.
BMC Genomics ; 18(1): 572, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768484

RESUMO

BACKGROUND: The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. RESULTS: In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. CONCLUSION: These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.


Assuntos
Genômica , Glycine max/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Doenças das Plantas , Análise de Sequência de RNA , Tylenchoidea/fisiologia , Animais , Glycine max/fisiologia
8.
BMC Genomics ; 18(1): 291, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403814

RESUMO

BACKGROUND: Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt). RESULTS: The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors. CONCLUSIONS: Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen's ability to infect the host.


Assuntos
Basidiomycota/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Triticum/genética , Sequência de Bases , Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes Fúngicos , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Caules de Planta/genética , Caules de Planta/microbiologia , Triticum/microbiologia
9.
Theor Appl Genet ; 130(9): 1867-1884, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28624908

RESUMO

KEY MESSAGE: Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency. Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.


Assuntos
Afídeos , Dípteros , Marcadores Genéticos , Triticum/genética , Animais , Brachypodium/genética , Mapeamento Cromossômico , Ligação Genética , Herbivoria , Oryza/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Sintenia
10.
Plant J ; 84(4): 733-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26408103

RESUMO

Next-generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole-genome shotgun sequencing is cost-prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow-sorted chromosome 5M(g) from a wheat/Aegilops geniculata disomic substitution line [DS5M(g) (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired-end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5M(g) , in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single-gene FISH indicated no major chromosomal rearrangements between chromosomes 5M(g) and 5D. Comparing chromosome 5M(g) with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5M(g) -specific SNPs and cytogenetic probe-based resources were developed and validated. Deletion bin-mapped and ordered 5M(g) SNP markers will be useful to track 5M-specific introgressions and translocations. This study provides a detailed sequence-based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Poaceae/genética , Brachypodium/genética , Mapeamento Cromossômico , Evolução Molecular , Ordem dos Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hordeum/genética , Hibridização in Situ Fluorescente , Oryza/genética , Poaceae/classificação , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Triticum/genética
11.
Proc Natl Acad Sci U S A ; 110(20): 8057-62, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630259

RESUMO

Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.


Assuntos
Ploidias , Triticum/genética , Alelos , Produtos Agrícolas/genética , Frequência do Gene , Genes de Plantas , Variação Genética , Genoma de Planta , Genótipo , Haplótipos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único
12.
BMC Genomics ; 15: 273, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24716476

RESUMO

BACKGROUND: Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). RESULTS: The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. CONCLUSION: This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and monitoring of alien segments in crop breeding programs and further enable mapping and cloning novel genes from the wild relatives of crop plants.


Assuntos
Hibridização Genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Reprodutibilidade dos Testes
13.
Plant Biotechnol J ; 12(6): 787-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24646323

RESUMO

High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence-absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.


Assuntos
Variação Genética , Genoma de Planta/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Triticum/genética , Alelos , Mapeamento Cromossômico , Análise por Conglomerados , Frequência do Gene/genética , Loci Gênicos , Marcadores Genéticos , Genótipo
14.
Plant Physiol ; 161(1): 252-65, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124323

RESUMO

Cycles of whole-genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, 35% of these gene structure rearrangements resulted in frame-shift mutations and premature termination codons. An increased codon mutation rate in the wheat lineage compared with Brachypodium distachyon was found for 17% of orthologs. The discovery of premature termination codons in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (21%-25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence between the duplicated homeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, nonsynonymous mutations, and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to the degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variations, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits.


Assuntos
Evolução Molecular , Genoma de Planta , Sintenia , Triticum/genética , Processamento Alternativo , Brachypodium/genética , Cromossomos de Plantas/genética , Códon sem Sentido/genética , DNA de Plantas/genética , Bases de Dados Genéticas , Éxons , Mutação da Fase de Leitura , Perfilação da Expressão Gênica , Ordem dos Genes , Íntrons , Taxa de Mutação , Fases de Leitura Aberta , Poliploidia , Pseudogenes , Seleção Genética
15.
Sci Total Environ ; 916: 170300, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272090

RESUMO

Reservoirs are regarded as potential collection sites for microplastics (MPs), and ample water resources in plateau regions provide favorable natural conditions for hydroelectric power generation. However, research on the impact of cascade reservoir construction in the plateau region on the fate of MPs within the watershed is limited. In this study, the Yalong River, an alpine canyon river in the eastern Qinghai-Tibet Plateau, was selected as the research area. This study explored the distribution of MPs at various depths in water, sediment, and riverbank soil as well as the formation of "MP communities" within the river-cascade reservoir system. Furthermore, the effects of dam construction on MPs' migration in different environments were analyzed. The results revealed that the abundance of MPs in the water and sediment within the cascade reservoir area (CRA) was significantly higher than that in the river area (RA) (P < 0.001). Additionally, the trend of increasing MPs in water with decreasing altitude was notably slower in CRA. Regarding shape, the proportion of fibers in the water within the CRA was significantly lower than that in the RA, with a smaller vertical migration rate in the water than in the sediment. The proportion of MPs < 500 µm in the water within the CRA was significantly higher than that in the RA. High-density MPs were notably deposited in the reservoir sediments. The analysis of the MP communities revealed that the construction of cascade dams led to relative geographical isolation between different sampling sites, reducing the similarity of MP communities in the CRA. This study established a theoretical foundation for understanding the impact of cascade dam construction on the fate characteristics of MPs and their potential risks in plateau areas.

16.
Int J Biol Macromol ; 226: 1054-1065, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36436607

RESUMO

Metal-organic frameworks (MOFs) are gradually used since of their huge specific surface area and superior pore structure. However, there are problems such as easy aggregation and difficult separation in water treatment. In this study, we prepared composite microspheres (FMCS-1) by modifying MIL-125-NH2 with Fe3O4 and chitosan. The structural characterization and performance analysis of the materials showed that the introduction of chitosan effectively prevents the stacking of MOFs. The magnetic test manifested that Fe3O4 solved the problem of the difficult separation of MOFs from water. The removal potential of toxic Cr(VI) was tested by adsorption experiments. The isotherm model indicated that FMCS-1 is a single molecular layer adsorbent with a maximum adsorption capacity of 109.46 mg/g at pH = 2. The adsorption kinetics showed that the adsorption of Cr(VI) by FMCS-1 was chemical adsorption. The acid resistance test demonstrated that FMCS-1 can exist stably in acid solutions. The recycling experiments proved that the adsorbent can be reused and the removal percentage still reaches 50 % after 5 cycles. This work expands the application of MOFs in water treatment and also provides an effective adsorbent for Cr(VI) removal.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Águas Residuárias , Poluentes Químicos da Água/química , Cromo/química , Adsorção , Cinética , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio
17.
ACS Nano ; 17(17): 17265-17272, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638681

RESUMO

Reconfigurable DNA origami provides a versatile tool to manipulate the conformation of matter on the nanometer scale. Typically, the DNA kirigami method enables the transformation of an origami structure from an initial shape to another predesigned shape by reconfiguring the staple strands. In a regular origami structure, since the perfectly matched and densely packed DNA duplexes block the removal of staple strands, the construction of finely trimmed "sub-origami" structures by the DNA kirigami method has remained challenging. Herein, we proposed a strategy to construct the presketched DNA origami canvas, where the offcut area in the canvas was sketched by loosely fixed staple strands with single-base insertion, to enhance the fineness of polymerase-driven DNA kirigami. We successfully trimmed presketched two-dimensional rectangular canvas, three-dimensional Möbius strip, and genie bottle canvases into complex letter patterns, supercoiled rings, and nanorods, respectively. Finally, we demonstrated a size-controlled DNA kirigami system: a presketched 6HB origami was trimmed into a set of shorter nanowires with predefined lengths, which quantitatively characterized the fineness of the improved DNA kirigami. The presketched origami design was a general method that applied to both 2D and 3D DNA origami structures in square and honeycomb lattices. Loosening DNA origami structures by introducing single-base insertions provides a practical approach to constructing dynamic components when designing DNA nanomachines. Furthermore, the delicate trimming of the DNA origami canvas driven by polymerase may inspire strategies for graphical information encryption and storage.


Assuntos
Nanotubos , Nanofios , DNA , Suturas
18.
Int J Biol Macromol ; 240: 124273, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031785

RESUMO

The pollution and harm of Sb3+ to aquatic systems is a global problem, so Sb3+ removal from the water environment to make sure environment safety and human beings wellbeing is of urgency. This study explored the effect of chitosan combined with nicotinamide-modified eupatorium adenophorum biochar (CEBC) on adsorbing Sb3+ through batch adsorption experiments. The experiments indicated CEBC's maximum adsorption capacity to Sb3+ is 170.15 mg·g-1. Meanwhile, the capacity of the original biochar (EBC) is only 9.97 mg·g-1. Compared with EBC, CEBC contains more functional groups, such as CO, -OH and -NH2. In addition, the pseudo-second-order kinetic model and the Langmuir model are fit to describe the kinetics and isotherms of adsorption of CEBC to Sb3+, which suggests that the adsorption of CEBC to Sb3+ is dominated by monolayer chemisorption. Density functional theory (DFT) calculations confirmed that the chelation between -NH2 and Sb3+ is of significance in the adsorption process of CEBC. DFT calculations also found that the newly added -OH and CO in EBC have a synergistic enhancement effect on the absorption of Sb3+. The mechanism of CEBC absorbing Sb3+ includes electrostatic interactions, pore filling, Л-Л interactions, hydrogen bonding, functional group complexation, chelation, and oxidation. CEBC has an excellent anti-interference ability for inorganic anions (NO3-, SO42- and Cl-) and can also use the coexisting HA to improve its adsorption performance. In addition, CEBC has better mitigation of Sb3+ on the performance of Sb3+ about its secondary release and good reproducibility, which indicates that CEBC is a viable Sb3+ adsorbent.


Assuntos
Ageratina , Quitosana , Poluentes Químicos da Água , Humanos , Adsorção , Teoria da Densidade Funcional , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Carvão Vegetal , Cinética
19.
Sci Rep ; 12(1): 10234, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715521

RESUMO

Knowledge of host associations of blood-feeding vectors may afford insights into managing disease systems and protecting public health. However, the ability of methods to distinguish bloodmeal sources varies widely. We used two methods-Sanger sequencing and amplicon deep sequencing-to target a 228 bp region of the vertebrate Cytochrome b gene and determine hosts fed upon by triatomines (n = 115) collected primarily in Texas, USA. Direct Sanger sequencing of PCR amplicons was successful for 36 samples (31%). Sanger sequencing revealed 15 distinct host species, which included humans, domestic animals (Canis lupus familiaris, Ovis aries, Gallus gallus, Bos taurus, Felis catus, and Capra hircus), wildlife (Rattus rattus, Incilius nebulifer, Sciurus carolinensis, Sciurus niger, and Odocoileus virginianus), and captive animals (Panthera tigris, Colobus spp., and Chelonoidis carbonaria). Samples sequenced by the Sanger method were also subjected to Illumina MiSeq amplicon deep sequencing. The amplicon deep sequencing results (average of 302,080 usable reads per sample) replicated the host community revealed using Sanger sequencing, and detected additional hosts in five triatomines (13.9%), including two additional blood sources (Procyon lotor and Bassariscus astutus). Up to four bloodmeal sources were detected in a single triatomine (I. nebulifer, Homo sapiens, C. lupus familiaris, and S. carolinensis). Enhanced understanding of vector-host-parasite networks may allow for integrated vector management programs focusing on highly-utilized and highly-infected host species.


Assuntos
Doença de Chagas , Cervos , Trypanosoma cruzi , Animais , Animais Domésticos/genética , Gatos , Bovinos , Doença de Chagas/parasitologia , Cervos/genética , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Trypanosoma cruzi/genética
20.
Front Plant Sci ; 13: 1057701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570880

RESUMO

In the Southern Great Plains, wheat cultivars have been selected for a combination of outstanding yield and drought tolerance as a long-term breeding goal. To understand the underlying genetic mechanisms, this study aimed to dissect the quantitative trait loci (QTL) associated with yield components and kernel traits in two wheat cultivars `TAM 112' and `Duster' under both irrigated and dryland environments. A set of 182 recombined inbred lines (RIL) derived from the cross of TAM 112/Duster were planted in 13 diverse environments for evaluation of 18 yield and kernel related traits. High-density genetic linkage map was constructed using 5,081 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS). QTL mapping analysis detected 134 QTL regions on all 21 wheat chromosomes, including 30 pleiotropic QTL regions and 21 consistent QTL regions, with 10 QTL regions in common. Three major pleiotropic QTL on the short arms of chromosomes 2B (57.5 - 61.6 Mbps), 2D (37.1 - 38.7 Mbps), and 7D (66.0 - 69.2 Mbps) colocalized with genes Ppd-B1, Ppd-D1, and FT-D1, respectively. And four consistent QTL associated with kernel length (KLEN), thousand kernel weight (TKW), plot grain yield (YLD), and kernel spike-1 (KPS) (Qklen.tamu.1A.325, Qtkw.tamu.2B.137, Qyld.tamu.2D.3, and Qkps.tamu.6A.113) explained more than 5% of the phenotypic variation. QTL Qklen.tamu.1A.325 is a novel QTL with consistent effects under all tested environments. Marker haplotype analysis indicated the QTL combinations significantly increased yield and kernel traits. QTL and the linked markers identified in this study will facilitate future marker-assisted selection (MAS) for pyramiding the favorable alleles and QTL map-based cloning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA