RESUMO
Screening for persistent organic pollutants (POPs) in food is a complex and challenging process, as POPs can be present in very low levels and can be difficult to detect. Herein, we developed an ultrasensitive biosensor based on a rolling circle amplification (RCA) platform using a glucometer to determine POP. The biosensor was constructed using gold nanoparticle probes modified with antibodies and dozens of primers, magnetic microparticle probes conjugated with haptens, and targets. After competition, RCA reactions are triggered, numerous RCA products hybridize with the ssDNA-invertase, and the target is successfully transformed into glucose. Using ractopamine as a model analyte, this strategy obtained a linear detection range of 0.038-5.00 ng mL-1 and a detection limit of 0.0158 ng mL-1, which was preliminarily verified by screening in real samples. Compared with conventional immunoassays, this biosensor utilizes the high efficiency of RCA and the portable properties of a glucometer, which effectively improves the sensitivity and simplifies the procedures using magnetic separation technology. Moreover, it has been successfully applied to ractopamine determination in animal-derived foods, revealing its potential as a promising tool for POP screening.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Ouro , Técnicas Biossensoriais/métodos , FenetilaminasRESUMO
Flavor is one of the most important sensory characteristics of meat. The development of taste and aroma can be attributed to thousands of flavor molecules and precursors that are present in meat tissues. As a result, the identification of these flavor compounds and an improved understanding of their roles are necessary for improving the sensory quality and customer appeal of meat products. In the current study, we compared the metabolic profiles of meat specimens from the Lubei white goats (LBB), Boer goats (BE) and Jining grey goats (JNQ) by untargeted liquid chromatography-mass spectrometry. Our metabolomic data revealed that the three types of goat meat showed significantly different profiles of fatty acids, aldehydes, ketones, lactones, alkaloids, flavonoids, phenolics and drug residues, which could underpin the nuances of their flavors. Taken together, our results provided insights into the molecular basis for sensory variations between different goat meat products.
RESUMO
Cognition is very important in our daily life. However, amblyopia has abnormal visual cognition. Physiological changes of the brain during processes of cognition could be reflected with ERPs. So the purpose of this study was to investigate the speed and the capacity of resource allocation in visual cognitive processing in orientation discrimination task during monocular and binocular viewing conditions of amblyopia and normal control as well as the corresponding eyes of the two groups with ERPs. We also sought to investigate whether the speed and the capacity of resource allocation in visual cognitive processing vary with target stimuli at different spatial frequencies (3, 6 and 9 cpd) in amblyopia and normal control as well as between the corresponding eyes of the two groups. Fifteen mild to moderate anisometropic amblyopes and ten normal controls were recruited. Three-stimulus oddball paradigms of three different spatial frequency orientation discrimination tasks were used in monocular and binocular conditions in amblyopes and normal controls to elicit event-related potentials (ERPs). Accuracy (ACC), reaction time (RT), the latency of novelty P300 and P3b, and the amplitude of novelty P300 and P3b were measured. Results showed that RT was longer in the amblyopic eye than in both eyes of amblyopia and non-dominant eye in control. Novelty P300 amplitude was largest in the amblyopic eye, followed by the fellow eye, and smallest in both eyes of amblyopia. Novelty P300 amplitude was larger in the amblyopic eye than non-dominant eye and was larger in fellow eye than dominant eye. P3b latency was longer in the amblyopic eye than in the fellow eye, both eyes of amblyopia and non-dominant eye of control. P3b latency was not associated with RT in amblyopia. Neural responses of the amblyopic eye are abnormal at the middle and late stages of cognitive processing, indicating that the amblyopic eye needs to spend more time or integrate more resources to process the same visual task. Fellow eye and both eyes in amblyopia are slightly different from the dominant eye and both eyes in normal control at the middle and late stages of cognitive processing. Meanwhile, abnormal extents of amblyopic eye do not vary with three different spatial frequencies used in our study.
Assuntos
Ambliopia/fisiopatologia , Anisometropia/fisiopatologia , Acuidade Visual/fisiologia , Adolescente , Adulto , Cognição , Potenciais Evocados Visuais , Olho/fisiopatologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação , Fatores de TempoRESUMO
PPR (pentatricopeptide repeats) gene family, one of the largest gene families discovered in plants, is characterized by tandem arrays of pentatricopeptide repeats, which play essential roles in mitochondria or chloroplasts, probably via binding to organellar transcripts. In this review, we summarized the current status in the study of PPR family, including the structure character of PPR gene, the distribution in the chromosome arms and other genomes, as well as the biological function of PPR gene.